TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells

  1. Bin Wu
  2. François G C Blot
  3. Aaron Benson Wong
  4. Catarina Osório
  5. Youri Adolfs
  6. R Jeroen Pasterkamp
  7. Jana Hartmann
  8. Esther B E Becker
  9. Henk-Jan Boele
  10. Chris I De Zeeuw
  11. Martijn Schonewille  Is a corresponding author
  1. Erasmus Medical Center, Netherlands
  2. University Medical Center Utrecht, Netherlands
  3. Technische Universität München, Germany
  4. University of Oxford, United Kingdom

Abstract

Despite the canonical homogeneous character of its organization, the cerebellum plays differential computational roles in distinct sensorimotor behaviors. Previously we showed that Purkinje cell activity differs between zebrin-negative (Z-) and zebrin-positive (Z+) modules (Zhou et al., 2014). Here, using gain-of-function and loss-of-function mouse models, we show that transient receptor potential cation channel C3 (TRPC3) controls the simple spike activity of Z-, but not Z+ Purkinje cells. In addition, TRPC3 regulates complex spike rate and their interaction with simple spikes, exclusively in Z- Purkinje cells. At the behavioral level, TRPC3 loss-of-function mice show impaired eyeblink conditioning, which is related to Z- modules, whereas compensatory eye movement adaptation, linked to Z+ modules, is intact. Together, our results indicate that TRPC3 is a major contributor to the cellular heterogeneity that introduces distinct physiological properties in Purkinje cells, conjuring functional heterogeneity in cerebellar sensorimotor integration.

Data availability

All electrophysiology and behavioral data are included in the manuscript and supporting files. Source data files have been provided for Figures 2 to 7 and Figures S4 to S8.

Article and author information

Author details

  1. Bin Wu

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4198-1661
  2. François G C Blot

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Aaron Benson Wong

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1650-2710
  4. Catarina Osório

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Youri Adolfs

    Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. R Jeroen Pasterkamp

    Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1631-6440
  7. Jana Hartmann

    Institute of Neuroscience, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Esther B E Becker

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5238-4902
  9. Henk-Jan Boele

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Chris I De Zeeuw

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5628-8187
  11. Martijn Schonewille

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    For correspondence
    m.schonewille@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2675-1393

Funding

European Commission (ERC-Stg #680235)

  • Martijn Schonewille

China Scholarship Council (#201306230130)

  • Bin Wu

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (ALW / Zon-Mw)

  • Chris I De Zeeuw

European Commission (ERC-Adv)

  • Chris I De Zeeuw

European Commission (ERC-POC)

  • Chris I De Zeeuw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed under and all of the animals were handled according to a project license approved by the Dutch Central Committee for Animal Experiments (CCD, AVD #101002015273). Each experiment was separately verified and approved by the Animal Welfare Body (IvD/AWB, various numbers). All surgery was performed under isoflurane anesthesia combined with local anesthetics and analgesics in an effort to minimize suffering.

Copyright

© 2019, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,116
    views
  • 466
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bin Wu
  2. François G C Blot
  3. Aaron Benson Wong
  4. Catarina Osório
  5. Youri Adolfs
  6. R Jeroen Pasterkamp
  7. Jana Hartmann
  8. Esther B E Becker
  9. Henk-Jan Boele
  10. Chris I De Zeeuw
  11. Martijn Schonewille
(2019)
TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells
eLife 8:e45590.
https://doi.org/10.7554/eLife.45590

Share this article

https://doi.org/10.7554/eLife.45590

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.