TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells
Abstract
Despite the canonical homogeneous character of its organization, the cerebellum plays differential computational roles in distinct sensorimotor behaviors. Previously we showed that Purkinje cell activity differs between zebrin-negative (Z-) and zebrin-positive (Z+) modules (Zhou et al., 2014). Here, using gain-of-function and loss-of-function mouse models, we show that transient receptor potential cation channel C3 (TRPC3) controls the simple spike activity of Z-, but not Z+ Purkinje cells. In addition, TRPC3 regulates complex spike rate and their interaction with simple spikes, exclusively in Z- Purkinje cells. At the behavioral level, TRPC3 loss-of-function mice show impaired eyeblink conditioning, which is related to Z- modules, whereas compensatory eye movement adaptation, linked to Z+ modules, is intact. Together, our results indicate that TRPC3 is a major contributor to the cellular heterogeneity that introduces distinct physiological properties in Purkinje cells, conjuring functional heterogeneity in cerebellar sensorimotor integration.
Data availability
All electrophysiology and behavioral data are included in the manuscript and supporting files. Source data files have been provided for Figures 2 to 7 and Figures S4 to S8.
Article and author information
Author details
Funding
European Commission (ERC-Stg #680235)
- Martijn Schonewille
China Scholarship Council (#201306230130)
- Bin Wu
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (ALW / Zon-Mw)
- Chris I De Zeeuw
European Commission (ERC-Adv)
- Chris I De Zeeuw
European Commission (ERC-POC)
- Chris I De Zeeuw
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed under and all of the animals were handled according to a project license approved by the Dutch Central Committee for Animal Experiments (CCD, AVD #101002015273). Each experiment was separately verified and approved by the Animal Welfare Body (IvD/AWB, various numbers). All surgery was performed under isoflurane anesthesia combined with local anesthetics and analgesics in an effort to minimize suffering.
Reviewing Editor
- Jennifer L Raymond, Stanford School of Medicine, United States
Publication history
- Received: February 8, 2019
- Accepted: August 18, 2019
- Accepted Manuscript published: September 5, 2019 (version 1)
- Version of Record published: September 9, 2019 (version 2)
Copyright
© 2019, Wu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,268
- Page views
-
- 340
- Downloads
-
- 19
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
- Stem Cells and Regenerative Medicine
Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche.
-
- Neuroscience
- Stem Cells and Regenerative Medicine
Fusing brain organoids with blood vessel organoids leads to the incorporation of non-neural endothelial cells and microglia into the brain organoids.