'Palaeoshellomics' reveals the use of freshwater mother-of-pearl in prehistory

  1. Jorune Sakalauskaite
  2. Søren Andersen
  3. Paolo Biagi
  4. Maria A Borrello
  5. Théophile Cocquerez
  6. André Carlo Colonese
  7. Federica Dal Bello
  8. Alberto Girod
  9. Marion Heumüller
  10. Hannah Koon
  11. Giorgia Mandili
  12. Claudio Medana
  13. Kirsty E H Penkman
  14. Laurent Plasseraud
  15. Helmut Schlichtherle
  16. Sheila Taylor
  17. Caroline Tokarski
  18. Jérôme Thomas
  19. Julie Wilson
  20. Frédéric Marin
  21. Beatrice Demarchi  Is a corresponding author
  1. University of Turin, Italy
  2. Moesgaard Museum, Denmark
  3. University of Ca' Foscari, Italy
  4. Independent Researcher, Switzerland
  5. University of Burgundy-Franche-Comté, France
  6. University of York, United Kingdom
  7. Italian Malacological Society, Switzerland
  8. Niedersächsisches Landesamt für Denkmalpflege, Germany
  9. University of Bradford, United Kingdom
  10. Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Germany
  11. University of Lille, France

Abstract

The extensive use of mollusc shell as a versatile raw material is testament to its importance in prehistoric times. The consistent choice of certain species for different purposes, including the making of ornaments, is a direct representation of how humans viewed and exploited their environment. The necessary taxonomic information, however, is often impossible to obtain from objects that are small, heavily worked or degraded. Here we propose a novel biogeochemical approach to track the biological origin of prehistoric mollusc shell. We conducted an in-depth study of archaeological ornaments using microstructural, geochemical and biomolecular analyses, including 'palaeoshellomics', the first application of palaeoproteomics to mollusc shells (and indeed to any invertebrate calcified tissue). We reveal the consistent use of locally-sourced freshwater mother-of-pearl for the standardized manufacture of 'double-buttons'. This craft is found throughout Europe between 4200 - 3800 BCE, highlighting the ornament-makers' profound knowledge of the biogeosphere and the existence of cross-cultural traditions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 4 and 5. All the mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the data set identifier PXD011985

The following data sets were generated

Article and author information

Author details

  1. Jorune Sakalauskaite

    Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8029-8120
  2. Søren Andersen

    Moesgaard Museum, Højbjerg, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Paolo Biagi

    Department of Asian and North African Studies, University of Ca' Foscari, Venice, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria A Borrello

    Independent Researcher, Genève, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Théophile Cocquerez

    UMR CNRS 6282 Biogeosciences, University of Burgundy-Franche-Comté, Dijon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. André Carlo Colonese

    Department of Archaeology, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Federica Dal Bello

    Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0726-3025
  8. Alberto Girod

    Italian Malacological Society, Sorengo, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Marion Heumüller

    Niedersächsisches Landesamt für Denkmalpflege, Hanover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Hannah Koon

    School of Archaeological and Forensic Sciences, University of Bradford, Bradford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Giorgia Mandili

    Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
    Competing interests
    The authors declare that no competing interests exist.
  12. Claudio Medana

    Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
    Competing interests
    The authors declare that no competing interests exist.
  13. Kirsty E H Penkman

    Department of Chemistry, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6226-9799
  14. Laurent Plasseraud

    Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy-Franche-Comté, Dijon, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Helmut Schlichtherle

    Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Sheila Taylor

    Department of Chemistry, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Caroline Tokarski

    Miniaturisation pour la Synthèse, l'Analyse and la Protéomique (MSAP), USR CNRS 3290, University of Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  18. Jérôme Thomas

    UMR CNRS 6282 Biogeosciences, University of Burgundy-Franche-Comté, Dijon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1602-4416
  19. Julie Wilson

    Department of Mathematics, University of York, York, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  20. Frédéric Marin

    UMR CNRS 6282 Biogeosciences, University of Burgundy-Franche-Comté, Dijon, France
    Competing interests
    The authors declare that no competing interests exist.
  21. Beatrice Demarchi

    Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
    For correspondence
    beatrice@palaeo.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8398-4409

Funding

Ministero dell'Istruzione, dell'Università e della Ricerca (Young Researchers)

  • Beatrice Demarchi

European Commission (PERG-GA-2010-268429)

  • Kirsty E H Penkman
  • Beatrice Demarchi

Leverhulme Trust

  • Kirsty E H Penkman

Centre National de la Recherche Scientifique

  • Théophile Cocquerez
  • Laurent Plasseraud
  • Caroline Tokarski
  • Jérôme Thomas
  • Frédéric Marin

PHC Galilée programme, Italo-French University

  • Jorune Sakalauskaite
  • Frédéric Marin
  • Beatrice Demarchi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jessica C. Thompson, Yale University, United States

Publication history

  1. Received: January 30, 2019
  2. Accepted: April 20, 2019
  3. Accepted Manuscript published: May 7, 2019 (version 1)
  4. Version of Record published: May 30, 2019 (version 2)

Copyright

© 2019, Sakalauskaite et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,016
    Page views
  • 401
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jorune Sakalauskaite
  2. Søren Andersen
  3. Paolo Biagi
  4. Maria A Borrello
  5. Théophile Cocquerez
  6. André Carlo Colonese
  7. Federica Dal Bello
  8. Alberto Girod
  9. Marion Heumüller
  10. Hannah Koon
  11. Giorgia Mandili
  12. Claudio Medana
  13. Kirsty E H Penkman
  14. Laurent Plasseraud
  15. Helmut Schlichtherle
  16. Sheila Taylor
  17. Caroline Tokarski
  18. Jérôme Thomas
  19. Julie Wilson
  20. Frédéric Marin
  21. Beatrice Demarchi
(2019)
'Palaeoshellomics' reveals the use of freshwater mother-of-pearl in prehistory
eLife 8:e45644.
https://doi.org/10.7554/eLife.45644

Further reading

    1. Biochemistry and Chemical Biology
    Ziyue Wang, Michael Mülleder ... Markus Ralser
    Research Article

    The possibility to record proteomes in high throughput and at high quality has opened new avenues for biomedical research, drug discovery, systems biology, and clinical translation. However, high-throughput proteomic experiments often require high sample amounts and can be less sensitive compared to conventional proteomic experiments. Here, we introduce and benchmark Zeno SWATH MS, a data-independent acquisition technique that employs a linear ion trap pulsing (Zeno trap pulsing) to increase the sensitivity in high-throughput proteomic experiments. We demonstrate that when combined with fast micro- or analytical flow-rate chromatography, Zeno SWATH MS increases protein identification with low sample amounts. For instance, using 20 min micro-flow-rate chromatography, Zeno SWATH MS identified more than 5000 proteins consistently, and with a coefficient of variation of 6%, from a 62.5 ng load of human cell line tryptic digest. Using 5 min analytical flow-rate chromatography (800 µl/min), Zeno SWATH MS identified 4907 proteins from a triplicate injection of 2 µg of a human cell lysate, or more than 3000 proteins from a 250 ng tryptic digest. Zeno SWATH MS hence facilitates sensitive high-throughput proteomic experiments with low sample amounts, mitigating the current bottlenecks of high-throughput proteomics.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article Updated

    Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2–3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.