Abstract

The regulation of neuropeptide level at the site of release is essential for proper neurophysiological functions. We focused on a prominent neuropeptide, oxytocin (OXT) in the zebrafish as an in vivo model to visualize and quantify OXT content at the resolution of a single synapse. We found that OXT-loaded synapses were enriched with polymerized actin. Perturbation of actin filaments by either cytochalasin-D or conditional Cofilin expression resulted in decreased synaptic OXT levels. Genetic loss of robo2 or slit3 displayed decreased synaptic OXT content and robo2 mutants displayed reduced mobility of the actin probe Lifeact-EGFP in OXT synapses.Using a novel transgenic reporter allowing real-time monitoring of OXT-loaded vesicles, we showed that robo2 mutants display slower rate of vesicles accumulation. OXT-specific expression of dominant-negative Cdc42, which is a key regulator of actin dynamics and a downstream effector of Robo2, led to a dose-dependent increase in OXT content in WT, and a dampened effect in robo2 mutants. Our results link Slit3-Robo2-Cdc42, which controls local actin dynamics, with the maintenance of synaptic neuropeptide levels.

Data availability

All source data files and codes were uploaded. Source data as summary tables is provided for all graphs and plots shown (Fig. 1E; 2B-E and G-J, 3E-H and J,K,M,N, 4D-F, 5O,R, 6I, 7C,D). R codes used for data import and analysis is provided.

Article and author information

Author details

  1. Savani Anbalagan

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Janna Blechman

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Gliksberg

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Ludmila Gordon

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Ron Rotkopf

    Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Tali Dadosh

    Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Eyal Shimoni

    Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Gil Levkowitz

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    gil.levkowitz@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3896-1881

Funding

Israel Science Foundation (1511/16)

  • Savani Anbalagan
  • Janna Blechman
  • Michael Gliksberg
  • Ludmila Gordon
  • Gil Levkowitz

Israel Science Foundation (2137/16)

  • Savani Anbalagan
  • Janna Blechman
  • Michael Gliksberg
  • Ludmila Gordon
  • Gil Levkowitz

Minerva Foundation ((Minerva Stiftung))

  • Savani Anbalagan
  • Janna Blechman
  • Michael Gliksberg
  • Ludmila Gordon
  • Gil Levkowitz

United States-Israel Binational Science Foundation (2017325)

  • Michael Gliksberg
  • Gil Levkowitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Ethics

Animal experimentation: Experiments involving zebrafish were approved by the Weizmann Institute'sInstitutional Animal Care and Use Committee (protocol #27220516)

Version history

  1. Received: January 30, 2019
  2. Accepted: June 8, 2019
  3. Accepted Manuscript published: June 10, 2019 (version 1)
  4. Version of Record published: June 24, 2019 (version 2)
  5. Version of Record updated: October 5, 2020 (version 3)

Copyright

© 2019, Anbalagan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,070
    views
  • 250
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Savani Anbalagan
  2. Janna Blechman
  3. Michael Gliksberg
  4. Ludmila Gordon
  5. Ron Rotkopf
  6. Tali Dadosh
  7. Eyal Shimoni
  8. Gil Levkowitz
(2019)
Robo2 regulates synaptic oxytocin content by affecting actin dynamics
eLife 8:e45650.
https://doi.org/10.7554/eLife.45650

Share this article

https://doi.org/10.7554/eLife.45650

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.