MagC, magnetic collection of ultrathin sections for volumetric correlative light and electron microscopy

  1. Thomas Templier  Is a corresponding author
  1. University of Zurich and ETH Zurich, Switzerland

Abstract

The non-destructive collection of ultrathin sections onto silicon wafers for post-embedding staining and volumetric correlative light and electron microscopy traditionally requires exquisite manual skills and is tedious and unreliable. In MagC introduced here, sample blocks are augmented with a magnetic resin enabling remote actuation and collection of hundreds of sections on wafer. MagC allowed the correlative visualization of neuroanatomical tracers within their ultrastructural volumetric electron microscopy context.

Data availability

Datasets 1 and 2 are publicly available for online visualization and download at https://neurodata.io/data/templier2019. Code is at https://github.com/templiert/MagC.

Article and author information

Author details

  1. Thomas Templier

    Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
    For correspondence
    thomas.templier2@gmail.com
    Competing interests
    Thomas Templier, A patent application has been filed by ETH Zurich (EP3171150A1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0523-5947

Funding

ETH Zurich Foundation ETH Grant (42 15-1)

  • Thomas Templier

Innosuisse-Swiss National Foundation Bridge Proof of Concept (173825)

  • Thomas Templier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by the Veterinary office of Canton Zurich (207/2013).

Reviewing Editor

  1. Moritz Helmstaedter, Max Planck Institute for Brain Research, Germany

Publication history

  1. Received: January 31, 2019
  2. Accepted: July 2, 2019
  3. Accepted Manuscript published: July 11, 2019 (version 1)
  4. Accepted Manuscript updated: July 12, 2019 (version 2)
  5. Version of Record published: August 16, 2019 (version 3)

Copyright

© 2019, Templier

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,955
    Page views
  • 328
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Templier
(2019)
MagC, magnetic collection of ultrathin sections for volumetric correlative light and electron microscopy
eLife 8:e45696.
https://doi.org/10.7554/eLife.45696

Further reading

    1. Neuroscience
    Kevin Vinberg, Jörgen Rosén ... Fredrik Ahs
    Research Article Updated

    Understanding the neural basis for individual differences in the skin conductance response (SCR) during discriminative fear conditioning may inform on our understanding of autonomic regulation in fear-related psychopathology. Previous region-of-interest (ROI) analyses have implicated the amygdala in regulating conditioned SCR, but whole brain analyses are lacking. This study examined correlations between individual differences in SCR during discriminative fear conditioning to social stimuli and neural activity throughout the brain, by using data from a large functional magnetic resonance imaging study of twins (N = 285 individuals). Results show that conditioned SCR correlates with activity in the dorsal anterior cingulate cortex/anterior midcingulate cortex, anterior insula, bilateral temporoparietal junction, right frontal operculum, bilateral dorsal premotor cortex, right superior parietal lobe, and midbrain. A ROI analysis additionally showed a positive correlation between amygdala activity and conditioned SCR in line with previous reports. We suggest that the observed whole brain correlates of SCR belong to a large-scale midcingulo-insular network related to salience detection and autonomic-interoceptive processing. Altered activity within this network may underlie individual differences in conditioned SCR and autonomic aspects of psychopathology.

    1. Neuroscience
    Rong Zhao, Stacy D Grunke ... Joanna L Jankowsky
    Research Article

    Neurodegenerative diseases are characterized by selective vulnerability of distinct cell populations; however, the cause for this specificity remains elusive. Here we show that entorhinal cortex layer 2 (EC2) neurons are unusually vulnerable to prolonged neuronal inactivity compared with neighboring regions of the temporal lobe, and that reelin+ stellate cells connecting EC with the hippocampus are preferentially susceptible within the EC2 population. We demonstrate that neuronal death after silencing can be elicited through multiple independent means of activity inhibition, and that preventing synaptic release, either alone or in combination with electrical shunting, is sufficient to elicit silencing-induced degeneration. Finally, we discovered that degeneration following synaptic silencing is governed by competition between active and inactive cells, which is a circuit refinement process traditionally thought to end early in postnatal life. Our data suggests that the developmental window for wholesale circuit plasticity may extend into adulthood for specific brain regions. We speculate that this sustained potential for remodeling by entorhinal neurons may support lifelong memory but renders them vulnerable to prolonged activity changes in disease.