MagC, magnetic collection of ultrathin sections for volumetric correlative light and electron microscopy

  1. Thomas Templier  Is a corresponding author
  1. University of Zurich and ETH Zurich, Switzerland

Abstract

The non-destructive collection of ultrathin sections onto silicon wafers for post-embedding staining and volumetric correlative light and electron microscopy traditionally requires exquisite manual skills and is tedious and unreliable. In MagC introduced here, sample blocks are augmented with a magnetic resin enabling remote actuation and collection of hundreds of sections on wafer. MagC allowed the correlative visualization of neuroanatomical tracers within their ultrastructural volumetric electron microscopy context.

Data availability

Datasets 1 and 2 are publicly available for online visualization and download at https://neurodata.io/data/templier2019. Code is at https://github.com/templiert/MagC.

Article and author information

Author details

  1. Thomas Templier

    Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
    For correspondence
    thomas.templier2@gmail.com
    Competing interests
    Thomas Templier, A patent application has been filed by ETH Zurich (EP3171150A1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0523-5947

Funding

ETH Zurich Foundation ETH Grant (42 15-1)

  • Thomas Templier

Innosuisse-Swiss National Foundation Bridge Proof of Concept (173825)

  • Thomas Templier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Moritz Helmstaedter, Max Planck Institute for Brain Research, Germany

Ethics

Animal experimentation: Animal experiments were approved by the Veterinary office of Canton Zurich (207/2013).

Version history

  1. Received: January 31, 2019
  2. Accepted: July 2, 2019
  3. Accepted Manuscript published: July 11, 2019 (version 1)
  4. Accepted Manuscript updated: July 12, 2019 (version 2)
  5. Version of Record published: August 16, 2019 (version 3)

Copyright

© 2019, Templier

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,637
    views
  • 402
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Templier
(2019)
MagC, magnetic collection of ultrathin sections for volumetric correlative light and electron microscopy
eLife 8:e45696.
https://doi.org/10.7554/eLife.45696

Share this article

https://doi.org/10.7554/eLife.45696

Further reading

    1. Neuroscience
    John J Stout, Allison E George ... Amy L Griffin
    Research Article

    Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6–11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.