Abstract

Bioluminescence imaging (BLI) is ubiquitous in scientific research for the sensitive tracking of biological processes in small animal models. However, due to the attenuation of visible light by tissue, and the limited set of near-infrared bioluminescent enzymes, BLI is largely restricted to monitoring single processes in vivo. Here we show, that by combining stabilised colour mutants of firefly luciferase (FLuc) with the luciferin (LH2) analogue infraluciferin (iLH2), near-infrared dual BLI can be achievedin vivo. The X-ray crystal structure of FLuc with a high-energy intermediate analogue, 5'-O-[N-(dehydroinfraluciferyl)sulfamoyl] adenosine (iDLSA) provides insight into the FLuc-iLH2 reaction leading to near-infrared light emission. The spectral characterisation and unmixing validation studies reported here established that iLH2 is superior to LH2 for the spectral unmixing of bioluminescent signals in vivo; which led to this novel near-infrared dual BLI system being applied to monitor both tumour burden and CAR T cell therapy within a systemically induced mouse tumour model.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Raw image files are available on Dryad Digital repository, at doi:10.5061/dryad.3j9kd51cs.

The following data sets were generated

Article and author information

Author details

  1. Cassandra L Stowe

    Cancer Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas A Burley

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Helen Allan

    Department of Chemistry, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Vinci

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabriela Kramer-Marek

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniela M Ciobota

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary N Parkinson

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Tara L Southworth

    Department of Chemistry, Connecticut College, New London, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Giulia Agliardi

    Cancer Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Alastair Hotblack

    Cancer Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark F Lythgoe

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Bruce R Branchini

    Department of Chemistry, Connecticut College, New London, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tammy L Kalber

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. James C Anderson

    Department of Chemistry, University College London, London, United Kingdom
    For correspondence
    j.c.anderson@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8120-4125
  15. Martin A Pule

    Cancer Institute, University College London, London, United Kingdom
    For correspondence
    m.pule@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (MCB-1410390)

  • Tara L Southworth
  • Bruce R Branchini

Air Force Office of Scientific Research (FA9550-18-1-0017)

  • Tara L Southworth
  • Bruce R Branchini

Engineering and Physical Sciences Research Council (EP/L504889/1)

  • Helen Allan
  • James C Anderson

University College London

  • Helen Allan
  • James C Anderson

Biotechnology and Biological Sciences Research Council

  • Cassandra L Stowe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Ethics

Animal experimentation: All animal procedures were conducted in accordance with the Home Office Scientific Procedures Act (1986), within the guidelines of the relevant personal and project licences.

Version history

  1. Received: February 5, 2019
  2. Accepted: September 25, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 4, 2019 (version 2)

Copyright

© 2019, Stowe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,235
    views
  • 697
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cassandra L Stowe
  2. Thomas A Burley
  3. Helen Allan
  4. Maria Vinci
  5. Gabriela Kramer-Marek
  6. Daniela M Ciobota
  7. Gary N Parkinson
  8. Tara L Southworth
  9. Giulia Agliardi
  10. Alastair Hotblack
  11. Mark F Lythgoe
  12. Bruce R Branchini
  13. Tammy L Kalber
  14. James C Anderson
  15. Martin A Pule
(2019)
Near-infrared dual bioluminescence imaging in mouse models of cancer using infraluciferin
eLife 8:e45801.
https://doi.org/10.7554/eLife.45801

Share this article

https://doi.org/10.7554/eLife.45801

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.