1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Near-infrared dual bioluminescence imaging in mouse models of cancer using infraluciferin

  1. Cassandra L Stowe
  2. Thomas A Burley
  3. Helen Allan
  4. Maria Vinci
  5. Gabriela Kramer-Marek
  6. Daniela M Ciobota
  7. Gary N Parkinson
  8. Tara L Southworth
  9. Giulia Agliardi
  10. Alastair Hotblack
  11. Mark F Lythgoe
  12. Bruce R Branchini
  13. Tammy L Kalber
  14. James C Anderson  Is a corresponding author
  15. Martin A Pule  Is a corresponding author
  1. University College London, United Kingdom
  2. Institute of Cancer Research, United Kingdom
  3. Connecticut College, United States
Research Article
  • Cited 0
  • Views 1,406
  • Annotations
Cite this article as: eLife 2019;8:e45801 doi: 10.7554/eLife.45801

Abstract

Bioluminescence imaging (BLI) is ubiquitous in scientific research for the sensitive tracking of biological processes in small animal models. However, due to the attenuation of visible light by tissue, and the limited set of near-infrared bioluminescent enzymes, BLI is largely restricted to monitoring single processes in vivo. Here we show, that by combining stabilised colour mutants of firefly luciferase (FLuc) with the luciferin (LH2) analogue infraluciferin (iLH2), near-infrared dual BLI can be achievedin vivo. The X-ray crystal structure of FLuc with a high-energy intermediate analogue, 5'-O-[N-(dehydroinfraluciferyl)sulfamoyl] adenosine (iDLSA) provides insight into the FLuc-iLH2 reaction leading to near-infrared light emission. The spectral characterisation and unmixing validation studies reported here established that iLH2 is superior to LH2 for the spectral unmixing of bioluminescent signals in vivo; which led to this novel near-infrared dual BLI system being applied to monitor both tumour burden and CAR T cell therapy within a systemically induced mouse tumour model.

Article and author information

Author details

  1. Cassandra L Stowe

    Cancer Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas A Burley

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Helen Allan

    Department of Chemistry, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Vinci

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabriela Kramer-Marek

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniela M Ciobota

    Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary N Parkinson

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Tara L Southworth

    Department of Chemistry, Connecticut College, New London, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Giulia Agliardi

    Cancer Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Alastair Hotblack

    Cancer Institute, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark F Lythgoe

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Bruce R Branchini

    Department of Chemistry, Connecticut College, New London, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Tammy L Kalber

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. James C Anderson

    Department of Chemistry, University College London, London, United Kingdom
    For correspondence
    j.c.anderson@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8120-4125
  15. Martin A Pule

    Cancer Institute, University College London, London, United Kingdom
    For correspondence
    m.pule@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (MCB-1410390)

  • Tara L Southworth
  • Bruce R Branchini

Air Force Office of Scientific Research (FA9550-18-1-0017)

  • Tara L Southworth
  • Bruce R Branchini

Engineering and Physical Sciences Research Council (EP/L504889/1)

  • Helen Allan
  • James C Anderson

University College London

  • Helen Allan
  • James C Anderson

Biotechnology and Biological Sciences Research Council

  • Cassandra L Stowe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in accordance with the Home Office Scientific Procedures Act (1986), within the guidelines of the relevant personal and project licences.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Publication history

  1. Received: February 5, 2019
  2. Accepted: September 25, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 4, 2019 (version 2)

Copyright

© 2019, Stowe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,406
    Page views
  • 231
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Adriana E Golding et al.
    Research Article Updated
    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jenna A Perry, Amy Shaub Maddox
    Insight