Gene activation by a CRISPR-assisted trans enhancer
Abstract
The deactivated CRISPR/Cas9 (dCas9) is now the most widely-used gene activators. However, the current dCas9-based gene activators are still limited by their unsatisfactory activity. In this study, we developed a new strategy, CRISPR-assisted trans enhancer, for activating gene expression in high efficiency by combining dCas9-VP64/sgRNA with the widely used strong CMV enhancer. In this strategy, a CMV enhancer DNA was recruited to target gene in trans by two systems, dCas9-VP64/csgRNA-sCMV and dCas9-VP64-GLA4/sgRNA-UAS-CMV. The former recruited trans enhancer by the annealing between two short complementary oligonucleotides at the ends of sgRNA and trans enhancer. The latter recruited trans enhancer by the binding between GLA4 fused to dCas9 and UAS sequence of trans enhancer. The trans enhancer activated gene transcription as the natural looped cis enhancer. The trans enhancer could activate both exogenous reporter gene and variant endogenous genes in various cells, with much higher activation efficiency than the current dCas9 activators.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
National Natural Science Foundation of China (61571119)
- Jinke Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Irwin Davidson, Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
Publication history
- Received: February 10, 2019
- Accepted: April 10, 2019
- Accepted Manuscript published: April 11, 2019 (version 1)
- Version of Record published: April 23, 2019 (version 2)
Copyright
© 2019, Xu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,339
- Page views
-
- 1,121
- Downloads
-
- 15
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
Ciliopathies manifest from sensory abnormalities to syndromic disorders with multi-organ pathologies, with retinal degeneration a highly penetrant phenotype. Photoreceptor cell death is a major cause of incurable blindness in retinal ciliopathies. To identify drug candidates to maintain photoreceptor survival, we performed an unbiased, high-throughput screening of over 6,000 bioactive small molecules using retinal organoids differentiated from induced pluripotent stem cells (iPSC) of rd16 mouse, which is a model of Leber congenital amaurosis (LCA) type 10 caused by mutations in the cilia-centrosomal gene CEP290. We identified five non-toxic positive hits, including the lead molecule reserpine, which maintained photoreceptor development and survival in rd16 organoids. Reserpine also improved photoreceptors in retinal organoids derived from induced pluripotent stem cells of LCA10 patients and in rd16 mouse retina in vivo. Reserpine-treated patient organoids revealed modulation of signaling pathways related to cell survival/death, metabolism, and proteostasis. Further investigation uncovered dysregulation of autophagy associated with compromised primary cilium biogenesis in patient organoids and rd16 mouse retina. Reserpine partially restored the balance between autophagy and the ubiquitin-proteasome system at least in part by increasing the cargo adaptor p62, resulting in improved primary cilium assembly. Our study identifies effective drug candidates in preclinical studies of CEP290 retinal ciliopathies through cross-species drug discovery using iPSC-derived organoids, highlights the impact of proteostasis in the pathogenesis of ciliopathies, and provides new insights for treatments of retinal neurodegeneration.
-
- Biochemistry and Chemical Biology
Mutations within Ras proteins represent major drivers in human cancer. In this study, we report the structure-based design, synthesis, as well as biochemical and cellular evaluation of nucleotide-based covalent inhibitors for KRasG13C, an important oncogenic mutant of Ras that has not been successfully addressed in the past. Mass spectrometry experiments and kinetic studies reveal promising molecular properties of these covalent inhibitors, and X-ray crystallographic analysis has yielded the first reported crystal structures of KRasG13C covalently locked with these GDP analogues. Importantly, KRasG13C covalently modified with these inhibitors can no longer undergo SOS-catalysed nucleotide exchange. As a final proof-of-concept, we show that in contrast to KRasG13C, the covalently locked protein is unable to induce oncogenic signalling in cells, further highlighting the possibility of using nucleotide-based inhibitors with covalent warheads in KRasG13C-driven cancer.