Abstract

The deactivated CRISPR/Cas9 (dCas9) is now the most widely-used gene activators. However, the current dCas9-based gene activators are still limited by their unsatisfactory activity. In this study, we developed a new strategy, CRISPR-assisted trans enhancer, for activating gene expression in high efficiency by combining dCas9-VP64/sgRNA with the widely used strong CMV enhancer. In this strategy, a CMV enhancer DNA was recruited to target gene in trans by two systems, dCas9-VP64/csgRNA-sCMV and dCas9-VP64-GLA4/sgRNA-UAS-CMV. The former recruited trans enhancer by the annealing between two short complementary oligonucleotides at the ends of sgRNA and trans enhancer. The latter recruited trans enhancer by the binding between GLA4 fused to dCas9 and UAS sequence of trans enhancer. The trans enhancer activated gene transcription as the natural looped cis enhancer. The trans enhancer could activate both exogenous reporter gene and variant endogenous genes in various cells, with much higher activation efficiency than the current dCas9 activators.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xinhui Xu

    State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jinliang Gao

    State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Dai

    State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Danyang Wang

    State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jian Wu

    State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jinke Wang

    State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
    For correspondence
    wangjinke@seu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3352-4690

Funding

National Natural Science Foundation of China (61571119)

  • Jinke Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irwin Davidson, Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Version history

  1. Received: February 10, 2019
  2. Accepted: April 10, 2019
  3. Accepted Manuscript published: April 11, 2019 (version 1)
  4. Version of Record published: April 23, 2019 (version 2)

Copyright

© 2019, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,205
    views
  • 1,182
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinhui Xu
  2. Jinliang Gao
  3. Wei Dai
  4. Danyang Wang
  5. Jian Wu
  6. Jinke Wang
(2019)
Gene activation by a CRISPR-assisted trans enhancer
eLife 8:e45973.
https://doi.org/10.7554/eLife.45973

Share this article

https://doi.org/10.7554/eLife.45973

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.