1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

Molecular organization and dynamics of the fusion protein Gc at the hantavirus surface

  1. Eduardo A Bignon
  2. Amelina Albornoz
  3. Pablo Guardado-Calvo
  4. Félix A Rey  Is a corresponding author
  5. Nicole D Tischler  Is a corresponding author
  1. Fundación Ciencia and Vida, Chile
  2. Institut Pasteur, CNRS UMR 3569, France
Research Article
  • Cited 18
  • Views 1,697
  • Annotations
Cite this article as: eLife 2019;8:e46028 doi: 10.7554/eLife.46028

Abstract

The hantavirus envelope glycoproteins Gn and Gc mediate virion assembly and cell entry, with Gc driving fusion of viral and endosomal membranes. Although the X-ray structures and overall arrangement of Gn and Gc on the hantavirus spikes are known, their detailed interactions are not. Here we show that the lateral contacts between spikes are mediated by the same 2-fold contacts observed in Gc crystals at neutral pH, allowing the engineering of disulfide bonds to cross-link spikes. Disrupting the observed dimer interface affects particle assembly and overall spike stability. We further show that the spikes display a temperature-dependent dynamic behavior at neutral pH, alternating between 'open' and 'closed' forms. We show that the open form exposes the Gc fusion loops but is off-pathway for productive Gc-induced membrane fusion and cell entry. These data also provide crucial new insights for the design of optimized Gn/Gc immunogens to elicit protective immune responses.

Data availability

All data generated or analysed during this study are represented in the manuscript. Numerical data and statistics summary data source is provided for all graphs (Figures 2C, 3A, 3B, 4A, 4B, 4C, 5C, 5E, 6A, 6B, 6C, 6D and 6E).

Article and author information

Author details

  1. Eduardo A Bignon

    Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
    Competing interests
    Eduardo A Bignon, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
  2. Amelina Albornoz

    Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
    Competing interests
    No competing interests declared.
  3. Pablo Guardado-Calvo

    Structural Virology Unit, Virology Department, Institut Pasteur, CNRS UMR 3569, Paris, France
    Competing interests
    Pablo Guardado-Calvo, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
  4. Félix A Rey

    Structural Virology Unit, Virology Department, Institut Pasteur, CNRS UMR 3569, Paris, France
    For correspondence
    felix.rey@pasteur.fr
    Competing interests
    Félix A Rey, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
  5. Nicole D Tischler

    Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
    For correspondence
    ntischler@cienciavida.org
    Competing interests
    Nicole D Tischler, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4578-4780

Funding

Comisión Nacional de Investigación Científica y Tecnológica (Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT 1181799)

  • Nicole D Tischler

Comisión Nacional de Investigación Científica y Tecnológica (Programa de Apoyo a Centros con Financiamiento Basal 170004 to Fundación Ciencia and Vida)

  • Nicole D Tischler

Comisión Nacional de Investigación Científica y Tecnológica (FONDEQUIP EQM130092 for the improvement of BSL3 of Pontificia Universidad Católica de Chile)

  • Nicole D Tischler

Integrative Biology of Emerging Infectious Diseases Labex (French government´s (grant ANR-10-LABX-62-IBEID)

  • Félix A Rey

Labex IBEID (grant ANR-10-LABX-62-IBEID 4E AAP)

  • Pablo Guardado-Calvo
  • Félix A Rey

Infect-ERA IMI European network (Program)

  • Félix A Rey

Comisión Nacional de Investigación Científica y Tecnológica (Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT 3150695)

  • Amelina Albornoz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Publication history

  1. Received: February 12, 2019
  2. Accepted: June 10, 2019
  3. Accepted Manuscript published: June 10, 2019 (version 1)
  4. Version of Record published: July 4, 2019 (version 2)

Copyright

© 2019, Bignon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,697
    Page views
  • 229
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Anja Floeser et al.
    Research Article

    G protein-coupled receptors (GPCRs) transmit extracellular signals to the inside by activation of intracellular effector proteins. Different agonists can promote differential receptor-induced signaling responses – termed bias – potentially by eliciting different levels of recruitment of effector proteins. As activation and recruitment of effector proteins might influence each other, thorough analysis of bias is difficult. Here, we compared the efficacy of seven agonists to induce G protein, G protein-coupled receptor kinase 2 (GRK2), as well as arrestin3 binding to the muscarinic acetylcholine receptor M3 by utilizing FRET-based assays. In order to avoid interference between these interactions, we studied GRK2 binding in the presence of inhibitors of Gi and Gq proteins and analyzed arrestin3 binding to prestimulated M3 receptors to avoid differences in receptor phosphorylation influencing arrestin recruitment. We measured substantial differences in the agonist efficacies to induce M3R-arrestin3 versus M3R-GRK2 interaction. However, the rank order of the agonists for G protein- and GRK2-M3R interaction was the same, suggesting that G protein and GRK2 binding to M3R requires similar receptor conformations, whereas requirements for arrestin3 binding to M3R are distinct.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Martin Houlard et al.
    Research Article

    The dramatic change in morphology of chromosomal DNAs between interphase and mitosis is one of the defining features of the eukaryotic cell cycle. Two types of enzymes, namely cohesin and condensin confer the topology of chromosomal DNA by extruding DNA loops. While condensin normally configures chromosomes exclusively during mitosis, cohesin does so during interphase. The processivity of cohesin’s loop extrusion during interphase is limited by a regulatory factor called WAPL, which induces cohesin to dissociate from chromosomes via a mechanism that requires dissociation of its kleisin from the neck of SMC3. We show here that a related mechanism may be responsible for blocking condensin II from acting during interphase. Cells derived from patients affected by microcephaly caused by mutations in the MCPH1 gene undergo premature chromosome condensation but it has never been established for certain whether MCPH1 regulates condensin II directly. We show that deletion of Mcph1 in mouse embryonic stem cells unleashes an activity of condensin II that triggers formation of compact chromosomes in G1 and G2 phases, which is accompanied by enhanced mixing of A and B chromatin compartments, and that this occurs even in the absence of CDK1 activity. Crucially, inhibition of condensin II by MCPH1 depends on the binding of a short linear motif within MCPH1 to condensin II's NCAPG2 subunit. We show that the activities of both Cohesin and Condensin II may be restricted during interphase by similar types of mechanisms as MCPH1's ability to block condensin II's association with chromatin is abrogated by the fusion of SMC2 with NCAPH2. Remarkably, in the absence of both WAPL and MCPH1, cohesin and condensin II transform chromosomal DNAs of G2 cells into chromosomes with a solenoidal axis showing that both cohesin and condensin must be tightly regulated to adjust the structure of chromatids for their successful segregation.