Molecular organization and dynamics of the fusion protein Gc at the hantavirus surface

  1. Eduardo A Bignon
  2. Amelina Albornoz
  3. Pablo Guardado-Calvo
  4. Félix A Rey  Is a corresponding author
  5. Nicole D Tischler  Is a corresponding author
  1. Fundación Ciencia and Vida, Chile
  2. Institut Pasteur, CNRS UMR 3569, France

Abstract

The hantavirus envelope glycoproteins Gn and Gc mediate virion assembly and cell entry, with Gc driving fusion of viral and endosomal membranes. Although the X-ray structures and overall arrangement of Gn and Gc on the hantavirus spikes are known, their detailed interactions are not. Here we show that the lateral contacts between spikes are mediated by the same 2-fold contacts observed in Gc crystals at neutral pH, allowing the engineering of disulfide bonds to cross-link spikes. Disrupting the observed dimer interface affects particle assembly and overall spike stability. We further show that the spikes display a temperature-dependent dynamic behavior at neutral pH, alternating between 'open' and 'closed' forms. We show that the open form exposes the Gc fusion loops but is off-pathway for productive Gc-induced membrane fusion and cell entry. These data also provide crucial new insights for the design of optimized Gn/Gc immunogens to elicit protective immune responses.

Data availability

All data generated or analysed during this study are represented in the manuscript. Numerical data and statistics summary data source is provided for all graphs (Figures 2C, 3A, 3B, 4A, 4B, 4C, 5C, 5E, 6A, 6B, 6C, 6D and 6E).

Article and author information

Author details

  1. Eduardo A Bignon

    Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
    Competing interests
    Eduardo A Bignon, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
  2. Amelina Albornoz

    Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
    Competing interests
    No competing interests declared.
  3. Pablo Guardado-Calvo

    Structural Virology Unit, Virology Department, Institut Pasteur, CNRS UMR 3569, Paris, France
    Competing interests
    Pablo Guardado-Calvo, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
  4. Félix A Rey

    Structural Virology Unit, Virology Department, Institut Pasteur, CNRS UMR 3569, Paris, France
    For correspondence
    felix.rey@pasteur.fr
    Competing interests
    Félix A Rey, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
  5. Nicole D Tischler

    Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
    For correspondence
    ntischler@cienciavida.org
    Competing interests
    Nicole D Tischler, Is named inventor on a patent application describing disulfide bonds for hantavirus spike stabilization.(PCT/US19/22134).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4578-4780

Funding

Comisión Nacional de Investigación Científica y Tecnológica (Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT 1181799)

  • Nicole D Tischler

Comisión Nacional de Investigación Científica y Tecnológica (Programa de Apoyo a Centros con Financiamiento Basal 170004 to Fundación Ciencia and Vida)

  • Nicole D Tischler

Comisión Nacional de Investigación Científica y Tecnológica (FONDEQUIP EQM130092 for the improvement of BSL3 of Pontificia Universidad Católica de Chile)

  • Nicole D Tischler

Integrative Biology of Emerging Infectious Diseases Labex (French government´s (grant ANR-10-LABX-62-IBEID)

  • Félix A Rey

Labex IBEID (grant ANR-10-LABX-62-IBEID 4E AAP)

  • Pablo Guardado-Calvo
  • Félix A Rey

Infect-ERA IMI European network (Program)

  • Félix A Rey

Comisión Nacional de Investigación Científica y Tecnológica (Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT 3150695)

  • Amelina Albornoz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Bignon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,562
    views
  • 325
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eduardo A Bignon
  2. Amelina Albornoz
  3. Pablo Guardado-Calvo
  4. Félix A Rey
  5. Nicole D Tischler
(2019)
Molecular organization and dynamics of the fusion protein Gc at the hantavirus surface
eLife 8:e46028.
https://doi.org/10.7554/eLife.46028

Share this article

https://doi.org/10.7554/eLife.46028

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.