1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the Gβ subunit

  1. Ching-Ju Tsai
  2. Jacopo Marino
  3. Ricardo Adaixo
  4. Filip Pamula
  5. Jonas Muehle
  6. Shoji Maeda
  7. Tilman Flock
  8. Nicholas MI Taylor
  9. Inayatulla Mohammed
  10. Hugues Matile
  11. Roger JP Dawson
  12. Xavier Deupi  Is a corresponding author
  13. Henning Stahlberg  Is a corresponding author
  14. Gebhard Schertler  Is a corresponding author
  1. Paul Scherrer Institute, Switzerland
  2. University of Basel, Switzerland
  3. Hoffmann-La Roche Ltd, Switzerland
Research Article
  • Cited 23
  • Views 3,987
  • Annotations
Cite this article as: eLife 2019;8:e46041 doi: 10.7554/eLife.46041

Abstract

One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gβ subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gβ as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.

Data availability

The cryo-EM density map of the rhodopsin-Gi complex bound to Fab16 has been deposited in the EM Data Bank (accession code EMD-4598), and the related structure coordinates have been deposited in the Protein Data Bank (accession code 6QNO). The crystal structure of Fab16 has been deposited in the Protein Data Bank (accession code 6QNK). Source data for Figure 3 is provided in Suppl. Table 3.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ching-Ju Tsai

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8320-5009
  2. Jacopo Marino

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7095-0800
  3. Ricardo Adaixo

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  4. Filip Pamula

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
  5. Jonas Muehle

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
  6. Shoji Maeda

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
  7. Tilman Flock

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3398-0968
  8. Nicholas MI Taylor

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0761-4921
  9. Inayatulla Mohammed

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  10. Hugues Matile

    Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
    Competing interests
    No competing interests declared.
  11. Roger JP Dawson

    Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
    Competing interests
    No competing interests declared.
  12. Xavier Deupi

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    xavier.deupi@psi.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4572-9316
  13. Henning Stahlberg

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    For correspondence
    Henning.Stahlberg@unibas.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1185-4592
  14. Gebhard Schertler

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    gebhard.schertler@psi.ch
    Competing interests
    Gebhard Schertler, declares that he is a co-founder and scientific advisor of the company leadXpro AG and InterAx Biotech AG, and that he has been a member of the MAX IV Scientific Advisory Committee during the time when the research has been performed..

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_153145)

  • Gebhard Schertler

Swiss Nanoscience Institute (A13.12 NanoGhip)

  • Gebhard Schertler

National Centres of Competence in Research (TransCure)

  • Henning Stahlberg

Holcim Stiftung

  • Jacopo Marino

ETH Zurich

  • Tilman Flock

University of Cambridge

  • Tilman Flock

Roche

  • Shoji Maeda

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (160805)

  • Xavier Deupi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B_173335)

  • Gebhard Schertler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nikolaus Grigorieff, Janelia Research Campus, Howard Hughes Medical Institute, United States

Publication history

  1. Received: February 12, 2019
  2. Accepted: June 26, 2019
  3. Accepted Manuscript published: June 28, 2019 (version 1)
  4. Version of Record published: July 15, 2019 (version 2)

Copyright

© 2019, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,987
    Page views
  • 727
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Katarina Akhmetova et al.
    Research Article Updated

    Stimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work, we describe a previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage, and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). ACC and FASN also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FASN enzyme activity. Together, our results demonstrate a previously undescribed role of STING in lipid metabolism in Drosophila.