Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the Gβ subunit

  1. Ching-Ju Tsai
  2. Jacopo Marino
  3. Ricardo Adaixo
  4. Filip Pamula
  5. Jonas Muehle
  6. Shoji Maeda
  7. Tilman Flock
  8. Nicholas MI Taylor
  9. Inayatulla Mohammed
  10. Hugues Matile
  11. Roger JP Dawson
  12. Xavier Deupi  Is a corresponding author
  13. Henning Stahlberg  Is a corresponding author
  14. Gebhard Schertler  Is a corresponding author
  1. Paul Scherrer Institute, Switzerland
  2. University of Basel, Switzerland
  3. Hoffmann-La Roche Ltd, Switzerland

Abstract

One of the largest membrane protein families in eukaryotes are G protein-coupled receptors (GPCRs). GPCRs modulate cell physiology by activating diverse intracellular transducers, prominently heterotrimeric G proteins. The recent surge in structural data has expanded our understanding of GPCR-mediated signal transduction. However, many aspects, including the existence of transient interactions, remain elusive. We present the cryo-EM structure of the light-sensitive GPCR rhodopsin in complex with heterotrimeric Gi. Our density map reveals the receptor C-terminal tail bound to the Gβ subunit of the G protein, providing a structural foundation for the role of the C-terminal tail in GPCR signaling, and of Gβ as scaffold for recruiting Gα subunits and G protein-receptor kinases. By comparing available complexes, we found a small set of common anchoring points that are G protein-subtype specific. Taken together, our structure and analysis provide new structural basis for the molecular events of the GPCR signaling pathway.

Data availability

The cryo-EM density map of the rhodopsin-Gi complex bound to Fab16 has been deposited in the EM Data Bank (accession code EMD-4598), and the related structure coordinates have been deposited in the Protein Data Bank (accession code 6QNO). The crystal structure of Fab16 has been deposited in the Protein Data Bank (accession code 6QNK). Source data for Figure 3 is provided in Suppl. Table 3.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ching-Ju Tsai

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8320-5009
  2. Jacopo Marino

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7095-0800
  3. Ricardo Adaixo

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  4. Filip Pamula

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
  5. Jonas Muehle

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
  6. Shoji Maeda

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
  7. Tilman Flock

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3398-0968
  8. Nicholas MI Taylor

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0761-4921
  9. Inayatulla Mohammed

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  10. Hugues Matile

    Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
    Competing interests
    No competing interests declared.
  11. Roger JP Dawson

    Pharma Research and Early Development, Therapeutic modalities, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
    Competing interests
    No competing interests declared.
  12. Xavier Deupi

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    xavier.deupi@psi.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4572-9316
  13. Henning Stahlberg

    Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
    For correspondence
    Henning.Stahlberg@unibas.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1185-4592
  14. Gebhard Schertler

    Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    gebhard.schertler@psi.ch
    Competing interests
    Gebhard Schertler, declares that he is a co-founder and scientific advisor of the company leadXpro AG and InterAx Biotech AG, and that he has been a member of the MAX IV Scientific Advisory Committee during the time when the research has been performed..

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_153145)

  • Gebhard Schertler

Swiss Nanoscience Institute (A13.12 NanoGhip)

  • Gebhard Schertler

National Centres of Competence in Research (TransCure)

  • Henning Stahlberg

Holcim Stiftung

  • Jacopo Marino

ETH Zurich

  • Tilman Flock

University of Cambridge

  • Tilman Flock

Roche

  • Shoji Maeda

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (160805)

  • Xavier Deupi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B_173335)

  • Gebhard Schertler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nikolaus Grigorieff, Janelia Research Campus, Howard Hughes Medical Institute, United States

Publication history

  1. Received: February 12, 2019
  2. Accepted: June 26, 2019
  3. Accepted Manuscript published: June 28, 2019 (version 1)
  4. Version of Record published: July 15, 2019 (version 2)

Copyright

© 2019, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,275
    Page views
  • 754
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ching-Ju Tsai
  2. Jacopo Marino
  3. Ricardo Adaixo
  4. Filip Pamula
  5. Jonas Muehle
  6. Shoji Maeda
  7. Tilman Flock
  8. Nicholas MI Taylor
  9. Inayatulla Mohammed
  10. Hugues Matile
  11. Roger JP Dawson
  12. Xavier Deupi
  13. Henning Stahlberg
  14. Gebhard Schertler
(2019)
Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the Gβ subunit
eLife 8:e46041.
https://doi.org/10.7554/eLife.46041

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Morgane Boone et al.
    Research Advance Updated

    In eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Previously we showed that translational control is primarily exerted through a conformational switch in eIF2’s nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2 (Schoof et al. 2021). Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B’s β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed A/I-State model of allosteric ISR regulation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Florian Bleffert et al.
    Research Article Updated

    Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.