Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo

  1. Fabian Wehnekamp
  2. Gabriela Plucińska
  3. Rachel Thong
  4. Thomas Misgeld  Is a corresponding author
  5. Don C Lamb  Is a corresponding author
  1. Ludwig Maximilian University of Munich, Germany
  2. Technische Universität München, Germany

Abstract

We present the development and in vivo application of a feedback-based tracking microscope to follow individual mitochondria in sensory neurons of zebrafish larvae with nanometer precision and millisecond temporal resolution. By combining various technical improvements, we tracked individual mitochondria with unprecedented spatiotemporal resolution over distances of >100µm. Using these nanoscopic trajectory data, we discriminated five motional states: a fast and a slow directional motion state in both the anterograde and retrograde directions and a stationary state. The transition pattern revealed that mitochondria predominantly persist in the original direction of travel after a short pause, while transient changes of direction often exhibited longer pauses. Moreover, mitochondria in the vicinity of a second, stationary mitochondria displayed an increased probability to pause. The capability of following and optically manipulating a single organelle with high spatiotemporal resolution in a living organism offers a new approach to elucidating their function in its complete physiological context.

Data availability

The analysis software program is available on Gitlab and the wide-field images and trajectories are available on Zenodo. Source data files have been provided for all the figures.

The following data sets were generated

Article and author information

Author details

  1. Fabian Wehnekamp

    Physical Chemistry, Department for Chemistry and Center for Nanoscience, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriela Plucińska

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel Thong

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Misgeld

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    For correspondence
    thomas.misgeld@tum.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Don C Lamb

    Physical Chemistry, Department for Chemistry and Center for Nanoscience, Ludwig Maximilian University of Munich, Munich, Germany
    For correspondence
    d.lamb@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0232-1903

Funding

Deutsche Forschungsgemeinschaft (SFB1032 (Project B3))

  • Thomas Misgeld
  • Don C Lamb

Fakultät für Chemie und Pharmazie, Ludwig-Maximilians-Universität München (Center for NanoScience (CeNS) and the BioImaging Network (BIN))

  • Don C Lamb

H2020 European Research Council (ERC Grant Agreement n. 616791)

  • Thomas Misgeld

German Center for Neurodegenerative Diseases

  • Thomas Misgeld

Deutsche Forschungsgemeinschaft (research grants Mi 694/7)

  • Thomas Misgeld
  • Don C Lamb

Deutsche Forschungsgemeinschaft (Priority Program SPP1710)

  • Thomas Misgeld
  • Don C Lamb

Deutsche Forschungsgemeinschaft (SFB870 15 (Project A11))

  • Thomas Misgeld
  • Don C Lamb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Wehnekamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,405
    views
  • 345
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabian Wehnekamp
  2. Gabriela Plucińska
  3. Rachel Thong
  4. Thomas Misgeld
  5. Don C Lamb
(2019)
Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo
eLife 8:e46059.
https://doi.org/10.7554/eLife.46059

Share this article

https://doi.org/10.7554/eLife.46059

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Divyoj Singh, Sriram Ramaswamy ... Mohd Suhail Rizvi
    Research Article Updated

    Planar cell polarity (PCP) – tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface – is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules – broadly classified into ‘global’ and ‘local’ modules – have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment – a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.

    1. Physics of Living Systems
    Tommaso Amico, Samuel Toluwanimi Dada ... Amos Maritan
    Research Article

    Many proteins have been recently shown to undergo a process of phase separation that leads to the formation of biomolecular condensates. Intriguingly, it has been observed that some of these proteins form dense droplets of sizeable dimensions already below the critical concentration, which is the concentration at which phase separation occurs. To understand this phenomenon, which is not readily compatible with classical nucleation theory, we investigated the properties of the droplet size distributions as a function of protein concentration. We found that these distributions can be described by a scale-invariant log-normal function with an average that increases progressively as the concentration approaches the critical concentration from below. The results of this scaling analysis suggest the existence of a universal behaviour independent of the sequences and structures of the proteins undergoing phase separation. While we refrain from proposing a theoretical model here, we suggest that any model of protein phase separation should predict the scaling exponents that we reported here from the fitting of experimental measurements of droplet size distributions. Furthermore, based on these observations, we show that it is possible to use the scale invariance to estimate the critical concentration for protein phase separation.