Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo

  1. Fabian Wehnekamp
  2. Gabriela Plucińska
  3. Rachel Thong
  4. Thomas Misgeld  Is a corresponding author
  5. Don C Lamb  Is a corresponding author
  1. Ludwig Maximilian University of Munich, Germany
  2. Technische Universität München, Germany

Abstract

We present the development and in vivo application of a feedback-based tracking microscope to follow individual mitochondria in sensory neurons of zebrafish larvae with nanometer precision and millisecond temporal resolution. By combining various technical improvements, we tracked individual mitochondria with unprecedented spatiotemporal resolution over distances of >100µm. Using these nanoscopic trajectory data, we discriminated five motional states: a fast and a slow directional motion state in both the anterograde and retrograde directions and a stationary state. The transition pattern revealed that mitochondria predominantly persist in the original direction of travel after a short pause, while transient changes of direction often exhibited longer pauses. Moreover, mitochondria in the vicinity of a second, stationary mitochondria displayed an increased probability to pause. The capability of following and optically manipulating a single organelle with high spatiotemporal resolution in a living organism offers a new approach to elucidating their function in its complete physiological context.

Data availability

The analysis software program is available on Gitlab and the wide-field images and trajectories are available on Zenodo. Source data files have been provided for all the figures.

The following data sets were generated

Article and author information

Author details

  1. Fabian Wehnekamp

    Physical Chemistry, Department for Chemistry and Center for Nanoscience, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriela Plucińska

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel Thong

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Misgeld

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    For correspondence
    thomas.misgeld@tum.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Don C Lamb

    Physical Chemistry, Department for Chemistry and Center for Nanoscience, Ludwig Maximilian University of Munich, Munich, Germany
    For correspondence
    d.lamb@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0232-1903

Funding

Deutsche Forschungsgemeinschaft (SFB1032 (Project B3))

  • Thomas Misgeld
  • Don C Lamb

Fakultät für Chemie und Pharmazie, Ludwig-Maximilians-Universität München (Center for NanoScience (CeNS) and the BioImaging Network (BIN))

  • Don C Lamb

H2020 European Research Council (ERC Grant Agreement n. 616791)

  • Thomas Misgeld

German Center for Neurodegenerative Diseases

  • Thomas Misgeld

Deutsche Forschungsgemeinschaft (research grants Mi 694/7)

  • Thomas Misgeld
  • Don C Lamb

Deutsche Forschungsgemeinschaft (Priority Program SPP1710)

  • Thomas Misgeld
  • Don C Lamb

Deutsche Forschungsgemeinschaft (SFB870 15 (Project A11))

  • Thomas Misgeld
  • Don C Lamb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas L Schwarz, Boston Children's Hospital, United States

Publication history

  1. Received: February 13, 2019
  2. Accepted: June 5, 2019
  3. Accepted Manuscript published: June 10, 2019 (version 1)
  4. Version of Record published: June 17, 2019 (version 2)

Copyright

© 2019, Wehnekamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,995
    Page views
  • 298
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabian Wehnekamp
  2. Gabriela Plucińska
  3. Rachel Thong
  4. Thomas Misgeld
  5. Don C Lamb
(2019)
Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo
eLife 8:e46059.
https://doi.org/10.7554/eLife.46059

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Urszula Łapińska et al.
    Research Article

    Phenotypic variations between individual microbial cells play a key role in the resistance of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic mutations. These findings are in contrast with the current consensus that cellular dormancy and slow metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display significantly higher expression of ribosomal promoters before drug treatment compared to slow growing variants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate variants that displayed low antibiotic accumulation through the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic treatment failures.

    1. Physics of Living Systems
    2. Structural Biology and Molecular Biophysics
    Enrico Federico Semeraro et al.
    Research Article

    We report the real-time response of E. coli to lactoferricin-derived antimicrobial peptides (AMPs) on length-scales bridging microscopic cell-sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multi-scale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than three seconds-much faster than previously considered. Final intracellular AMP concentrations of ~ 80 to 100 mM suggest an efficient obstruction of physiologically important processes as primary cause for bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.