1. Physics of Living Systems
  2. Structural Biology and Molecular Biophysics
Download icon

Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo

  1. Fabian Wehnekamp
  2. Gabriela Plucińska
  3. Rachel Thong
  4. Thomas Misgeld  Is a corresponding author
  5. Don C Lamb  Is a corresponding author
  1. Ludwig Maximilian University of Munich, Germany
  2. Technische Universität München, Germany
Tools and Resources
  • Cited 0
  • Views 201
  • Annotations
Cite this article as: eLife 2019;8:e46059 doi: 10.7554/eLife.46059

Abstract

We present the development and in vivo application of a feedback-based tracking microscope to follow individual mitochondria in sensory neurons of zebrafish larvae with nanometer precision and millisecond temporal resolution. By combining various technical improvements, we tracked individual mitochondria with unprecedented spatiotemporal resolution over distances of >100µm. Using these nanoscopic trajectory data, we discriminated five motional states: a fast and a slow directional motion state in both the anterograde and retrograde directions and a stationary state. The transition pattern revealed that mitochondria predominantly persist in the original direction of travel after a short pause, while transient changes of direction often exhibited longer pauses. Moreover, mitochondria in the vicinity of a second, stationary mitochondria displayed an increased probability to pause. The capability of following and optically manipulating a single organelle with high spatiotemporal resolution in a living organism offers a new approach to elucidating their function in its complete physiological context.

Article and author information

Author details

  1. Fabian Wehnekamp

    Physical Chemistry, Department for Chemistry and Center for Nanoscience, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriela Plucińska

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel Thong

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Misgeld

    Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
    For correspondence
    thomas.misgeld@tum.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Don C Lamb

    Physical Chemistry, Department for Chemistry and Center for Nanoscience, Ludwig Maximilian University of Munich, Munich, Germany
    For correspondence
    d.lamb@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0232-1903

Funding

Deutsche Forschungsgemeinschaft (SFB1032 (Project B3))

  • Thomas Misgeld
  • Don C Lamb

Fakultät für Chemie und Pharmazie, Ludwig-Maximilians-Universität München (Center for NanoScience (CeNS) and the BioImaging Network (BIN))

  • Don C Lamb

H2020 European Research Council (ERC Grant Agreement n. 616791)

  • Thomas Misgeld

German Center for Neurodegenerative Diseases

  • Thomas Misgeld

Deutsche Forschungsgemeinschaft (research grants Mi 694/7)

  • Thomas Misgeld
  • Don C Lamb

Deutsche Forschungsgemeinschaft (Priority Program SPP1710)

  • Thomas Misgeld
  • Don C Lamb

Deutsche Forschungsgemeinschaft (SFB870 15 (Project A11))

  • Thomas Misgeld
  • Don C Lamb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas L Schwarz, Boston Children's Hospital, United States

Publication history

  1. Received: February 13, 2019
  2. Accepted: June 5, 2019
  3. Accepted Manuscript published: June 10, 2019 (version 1)

Copyright

© 2019, Wehnekamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 201
    Page views
  • 66
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Akanksha Thawani et al.
    Research Article Updated
    1. Physics of Living Systems
    Christoph Weber et al.
    Research Article