An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils

  1. Emil Dandanell Agerschou
  2. Patrick Flagmeier
  3. Theodora Saridaki
  4. Céline Galvagnion
  5. Daniel Komnig
  6. Laetitia Heid
  7. Vibha Prasad
  8. Hamed Shaykhalishahi
  9. Dieter Willbold
  10. Christopher M Dobson
  11. Aaron Voigt
  12. Björn Falkenbürger  Is a corresponding author
  13. Wolfgang Hoyer  Is a corresponding author
  14. Alexander K Buell  Is a corresponding author
  1. Heinrich Heine University Düsseldorf, Germany
  2. University of Cambridge, United Kingdom
  3. RWTH Aachen University, Germany
  4. Technical University of Denmark, Denmark

Abstract

Removing or preventing the formation of α-synuclein aggregates is a plausible strategy against Parkinson's disease. To this end we have engineered the β-wrapin AS69 to bind monomeric α-synuclein with high affinity. In cultured cells, AS69 reduced the self-interaction of α-synuclein and the formation of visible α-synuclein aggregates. In flies, AS69 reduced α-synuclein aggregates and the locomotor deficit resulting from α-synuclein expression in neuronal cells. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited both primary and autocatalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-α-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition of secondary nucleation. These results represent a new paradigm that high affinity monomer binders can lead to strongly sub-stoichiometric inhibition of nucleation processes.

Data availability

- Numerical data represented in the graphs for cell culture and fly experiments will be made publicly available on osf.io as we did for previous publications.- The numerical data for the biophysical experiments will be made publicly available within the same repository on osf.io.- The raw images of the gels used in the publication will be made publicly available.All data have been deposited on osf.io ( https://osf.io/6n2gs/?view_only=7eb7024d8ecb460a817cd0ed35978339 ) and will be made available in the event of publication

The following data sets were generated

Article and author information

Author details

  1. Emil Dandanell Agerschou

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick Flagmeier

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1204-5340
  3. Theodora Saridaki

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Céline Galvagnion

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Komnig

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6312-5236
  6. Laetitia Heid

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Vibha Prasad

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hamed Shaykhalishahi

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Dieter Willbold

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0065-7366
  10. Christopher M Dobson

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Aaron Voigt

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0428-7462
  12. Björn Falkenbürger

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    For correspondence
    bfalkenburger@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.
  13. Wolfgang Hoyer

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    For correspondence
    wolfgang.hoyer@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
  14. Alexander K Buell

    Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
    For correspondence
    alebu@dtu.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1161-3622

Funding

Leverhulme Trust

  • Alexander K Buell

Boehringer Ingelheim Fonds

  • Patrick Flagmeier

Studienstiftung des Deutschen Volkes

  • Patrick Flagmeier

Alexander von Humboldt-Stiftung

  • Céline Galvagnion

H2020 European Research Council (726368)

  • Céline Galvagnion

Parkinson's and Movement Disorder Foundation

  • Alexander K Buell

European Commission (706551)

  • Céline Galvagnion

Novo Nordisk Foundation

  • Alexander K Buell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Agerschou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,488
    views
  • 846
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emil Dandanell Agerschou
  2. Patrick Flagmeier
  3. Theodora Saridaki
  4. Céline Galvagnion
  5. Daniel Komnig
  6. Laetitia Heid
  7. Vibha Prasad
  8. Hamed Shaykhalishahi
  9. Dieter Willbold
  10. Christopher M Dobson
  11. Aaron Voigt
  12. Björn Falkenbürger
  13. Wolfgang Hoyer
  14. Alexander K Buell
(2019)
An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils
eLife 8:e46112.
https://doi.org/10.7554/eLife.46112

Share this article

https://doi.org/10.7554/eLife.46112

Further reading

    1. Neuroscience
    Walter Senn, Dominik Dold ... Mihai A Petrovici
    Research Article

    One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.

    1. Neuroscience
    Mengqiao Cui, Xiaoyuan Pan ... Jun-Li Cao
    Research Article

    Memory impairment in chronic pain patients is substantial and common, and few therapeutic strategies are available. Chronic pain-related memory impairment has susceptible and unsusceptible features. Therefore, exploring the underlying mechanisms of its vulnerability is essential for developing effective treatments. Here, combining two spatial memory tests (Y-maze test and Morris water maze), we segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations in a chronic neuropathic pain model induced by chronic constrictive injury of the sciatic nerve. RNA-Seq analysis and gain/loss-of-function study revealed that S1P/S1PR1 signaling is a determinant for vulnerability to chronic pain-related memory impairment. Knockdown of the S1PR1 in the dentate gyrus (DG) promoted a susceptible phenotype and led to structural plasticity changes of reduced excitatory synapse formation and abnormal spine morphology as observed in susceptible mice, while overexpression of the S1PR1 and pharmacological administration of S1PR1 agonist in the DG promoted an unsusceptible phenotype and prevented the occurrence of memory impairment, and rescued the morphological abnormality. Finally, the Gene Ontology (GO) enrichment analysis and biochemical evidence indicated that downregulation of S1PR1 in susceptible mice may impair DG structural plasticity via interaction with actin cytoskeleton rearrangement-related signaling pathways including Itga2 and its downstream Rac1/Cdc42 signaling and Arp2/3 cascade. These results reveal a novel mechanism and provide a promising preventive and therapeutic molecular target for vulnerability to chronic pain-related memory impairment.