An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils

  1. Emil Dandanell Agerschou
  2. Patrick Flagmeier
  3. Theodora Saridaki
  4. Céline Galvagnion
  5. Daniel Komnig
  6. Laetitia Heid
  7. Vibha Prasad
  8. Hamed Shaykhalishahi
  9. Dieter Willbold
  10. Christopher M Dobson
  11. Aaron Voigt
  12. Björn Falkenburger  Is a corresponding author
  13. Wolfgang Hoyer  Is a corresponding author
  14. Alexander K Buell  Is a corresponding author
  1. Heinrich Heine University Düsseldorf, Germany
  2. University of Cambridge, United Kingdom
  3. RWTH Aachen University, Germany
  4. Technical University of Denmark, Denmark

Abstract

Removing or preventing the formation of α-synuclein aggregates is a plausible strategy against Parkinson's disease. To this end we have engineered the β-wrapin AS69 to bind monomeric α-synuclein with high affinity. In cultured cells, AS69 reduced the self-interaction of α-synuclein and the formation of visible α-synuclein aggregates. In flies, AS69 reduced α-synuclein aggregates and the locomotor deficit resulting from α-synuclein expression in neuronal cells. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited both primary and autocatalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-α-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition of secondary nucleation. These results represent a new paradigm that high affinity monomer binders can lead to strongly sub-stoichiometric inhibition of nucleation processes.

Data availability

- Numerical data represented in the graphs for cell culture and fly experiments will be made publicly available on osf.io as we did for previous publications.- The numerical data for the biophysical experiments will be made publicly available within the same repository on osf.io.- The raw images of the gels used in the publication will be made publicly available.All data have been deposited on osf.io ( https://osf.io/6n2gs/?view_only=7eb7024d8ecb460a817cd0ed35978339 ) and will be made available in the event of publication

The following data sets were generated

Article and author information

Author details

  1. Emil Dandanell Agerschou

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick Flagmeier

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1204-5340
  3. Theodora Saridaki

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Céline Galvagnion

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Komnig

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6312-5236
  6. Laetitia Heid

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Vibha Prasad

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Hamed Shaykhalishahi

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Dieter Willbold

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0065-7366
  10. Christopher M Dobson

    Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Aaron Voigt

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0428-7462
  12. Björn Falkenburger

    Department of Neurology, RWTH Aachen University, Aachen, Germany
    For correspondence
    bfalkenburger@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.
  13. Wolfgang Hoyer

    Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    For correspondence
    wolfgang.hoyer@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
  14. Alexander K Buell

    Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
    For correspondence
    alebu@dtu.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1161-3622

Funding

Leverhulme Trust

  • Alexander K Buell

Boehringer Ingelheim Fonds

  • Patrick Flagmeier

Studienstiftung des Deutschen Volkes

  • Patrick Flagmeier

Alexander von Humboldt-Stiftung

  • Céline Galvagnion

Parkinson's and Movement Disorder Foundation

  • Alexander K Buell

H2020 European Research Council (MCSA grant agreement No 706551)

  • Céline Galvagnion

Novo Nordisk Foundation

  • Alexander K Buell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Agerschou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,633
    views
  • 864
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emil Dandanell Agerschou
  2. Patrick Flagmeier
  3. Theodora Saridaki
  4. Céline Galvagnion
  5. Daniel Komnig
  6. Laetitia Heid
  7. Vibha Prasad
  8. Hamed Shaykhalishahi
  9. Dieter Willbold
  10. Christopher M Dobson
  11. Aaron Voigt
  12. Björn Falkenburger
  13. Wolfgang Hoyer
  14. Alexander K Buell
(2019)
An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils
eLife 8:e46112.
https://doi.org/10.7554/eLife.46112

Share this article

https://doi.org/10.7554/eLife.46112

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.

    1. Neuroscience
    Takashi Yamamoto, Kayoko Ueji ... Shinya Ugawa
    Research Article

    The concept of ‘kokumi’, which refers to an enhanced and more delicious flavor of food, has recently generated considerable interest in food science. However, kokumi has not been well studied in gustatory physiology, and the underlying neuroscientific mechanisms remain largely unexplored. Our previous research demonstrated that ornithine (L-ornithine), which is abundant in shijimi clams, enhanced taste preferences in mice. The present study aimed to build on these findings and investigate the mechanisms responsible for kokumi in rats. In two-bottle preference tests, the addition of ornithine, at a low concentration that did not increase the favorability of this substance alone, enhanced the animals’ preferences for umami, sweet, fatty, salty, and bitter solutions, with the intake of monosodium glutamate showing the most significant increase. Additionally, a mixture of umami and ornithine synergistically induced significant responses in the chorda tympani nerve, which transmits taste information to the brain from the anterior part of the tongue. The observed preference enhancement and increase in taste-nerve response were abolished by antagonists of the G-protein-coupled receptor family C group 6 subtype A (GPRC6A). Furthermore, immunohistochemical analysis indicated that GPRC6A was expressed in a subset of type II taste cells in rat fungiform papillae. These results provide new insights into flavor-enhancement mechanisms, confirming that ornithine is a kokumi substance and GPRC6A is a novel kokumi receptor.