Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal Wnts

  1. Ruihua Ma
  2. Angelica Sofia Martínez-Ramírez
  3. Thomas L Borders
  4. Fanding Gao
  5. Beatriz Sosa-Pineda  Is a corresponding author
  1. Northwestern University Feinberg School of Medicine, United States

Abstract

The distribution of complementary metabolic functions in hepatocytes along a portocentral axis is called liver zonation. Endothelial secreted Wnt ligands maintain metabolic zonation in the adult murine liver but whether those ligands are necessary to initiate zonation in the immature liver has been only partially explored. Also, numerous non-metabolic proteins display zonated expression in the adult liver but it is not entirely clear if their localization requires endothelial Wnts. Here we used a novel transgenic mouse model to compare the spatial distribution of zonated non-metabolic proteins with that of typical zonated metabolic enzymes during liver maturation and after acute injury induced by carbon tetrachloride (CCl4). We also investigated how preventing Wnt ligand secretion from endothelial cells affects zonation patterns under homeostasis and after acute injury. Our study demonstrates that metabolic and non-metabolic zonation are established non-synchronously during maturation and regeneration and require multiple endothelial Wnt sources.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 - 7.

Article and author information

Author details

  1. Ruihua Ma

    Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Angelica Sofia Martínez-Ramírez

    Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas L Borders

    Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fanding Gao

    Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Beatriz Sosa-Pineda

    Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
    For correspondence
    beatriz.sosa-pineda@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6872-5444

Funding

Feinberg School of Medicine (New Faculty Award 10040043-01)

  • Beatriz Sosa-Pineda

Consejo Nacional de Ciencia y Tecnología (Postdoctoral Fellowship (ASMR))

  • Angelica Sofia Martínez-Ramírez

Feinberg School of Medicine funded all the experiments associated with the study.CONACYT awarded a fellowship to Dr. Martinez-RamirezThe funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (IS00003824, welfare assurance number A3283-01) of Northwestern University.

Copyright

© 2020, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,221
    views
  • 999
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruihua Ma
  2. Angelica Sofia Martínez-Ramírez
  3. Thomas L Borders
  4. Fanding Gao
  5. Beatriz Sosa-Pineda
(2020)
Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal Wnts
eLife 9:e46206.
https://doi.org/10.7554/eLife.46206

Share this article

https://doi.org/10.7554/eLife.46206

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rachael Kuintzle, Leah A Santat, Michael B Elowitz
    Research Article

    The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.