1. Computational and Systems Biology
  2. Microbiology and Infectious Disease
Download icon

HSV-1 single cell analysis reveals anti-viral and developmental programs activation in distinct sub-populations

  1. Nir Drayman  Is a corresponding author
  2. Parthiv Patel
  3. Luke Vistain
  4. Savas Tay  Is a corresponding author
  1. University of Chicago, United States
Research Article
  • Cited 17
  • Views 3,831
  • Annotations
Cite this article as: eLife 2019;8:e46339 doi: 10.7554/eLife.46339

Abstract

Viral infection is usually studied at the population level by averaging over millions of cells. However, infection at the single-cell level is highly heterogeneous, where most infected cells give rise to none or few viral progeny while some cells produce thousands. Analysis of HSV-1 infection by population averaged measurements has taught us a lot about the course of viral infection, but has also produced contradictory results, such as the concurrent activation and inhibition of type I interferon signaling during infection. Here, we combine live-cell imaging and single-cell RNA sequencing to characterize viral and host transcriptional heterogeneity during HSV-1 infection of primary human cells. We find extreme variability in the level of viral gene expression among individually infected cells and show that they cluster into transcriptionally distinct sub-populations. We find that anti-viral signaling is initiated in a rare group of abortively infected cells, while highly infected cells undergo cellular reprogramming to an embryonic-like transcriptional state. This reprogramming involves the recruitment of b-catenin to the host nucleus and viral replication compartments and is required for late viral gene expression and progeny production. These findings uncover the transcriptional differences in cells with variable infection outcomes and shed new light on the manipulation of host pathways by HSV-1.

Article and author information

Author details

  1. Nir Drayman

    Institute of Molecular Engineering, University of Chicago, Chicago, United States
    For correspondence
    nirdra@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4460-9558
  2. Parthiv Patel

    Institute of Molecular Engineering, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Luke Vistain

    Institute of Molecular Engineering, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Savas Tay

    Institute of Molecular Engineering, University of Chicago, Chicago, United States
    For correspondence
    tays@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Human Frontier Science Program (post-doctoral fellowship)

  • Nir Drayman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karla Kirkegaard, Stanford University School of Medicine, United States

Publication history

  1. Received: February 22, 2019
  2. Accepted: May 11, 2019
  3. Accepted Manuscript published: May 15, 2019 (version 1)
  4. Version of Record published: June 14, 2019 (version 2)

Copyright

© 2019, Drayman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,831
    Page views
  • 661
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Zhimin Liu et al.
    Research Article Updated

    To characterize how protein-protein interaction (PPI) networks change, we quantified the relative PPI abundance of 1.6 million protein pairs in the yeast Saccharomyces cerevisiae across nine growth conditions, with replication, for a total of 44 million measurements. Our multi-condition screen identified 13,764 pairwise PPIs, a threefold increase over PPIs identified in one condition. A few ‘immutable’ PPIs are present across all conditions, while most ‘mutable’ PPIs are rarely observed. Immutable PPIs aggregate into highly connected ‘core’ network modules, with most network remodeling occurring within a loosely connected ‘accessory’ module. Mutable PPIs are less likely to co-express, co-localize, and be explained by simple mass action kinetics, and more likely to contain proteins with intrinsically disordered regions, implying that environment-dependent association and binding is critical to cellular adaptation. Our results show that protein interactomes are larger than previously thought and contain highly dynamic regions that reorganize to drive or respond to cellular changes.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Xiakun Chu et al.
    Research Article

    The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to "U-shaped' folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4-DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.