Abstract

Membrane nanodomains have been implicated in Ras signaling, but what these domains are and how they interact with Ras remain obscure. Here, using single particle tracking with photoactivated localization microscopy (spt-PALM) and detailed trajectory analysis, we show that distinct membrane domains dictate KRasG12D (an active KRas mutant) diffusion and trafficking in U2OS cells. KRasG12D exhibits an immobile state in ~70 nm domains, each embedded in a larger domain (~200 nm) that confers intermediate mobility, while the rest of the membrane supports fast diffusion. Moreover, KRasG12D is continuously removed from the membrane via the immobile state and replenished to the fast state, reminiscent of Ras internalization and recycling. Importantly, both the diffusion and trafficking properties of KRasG12D remain invariant over a broad range of protein expression levels. Our results reveal how membrane organization dictates membrane diffusion and trafficking of Ras and offer new insight into the spatial regulation of Ras signaling.

Data availability

We have provided a complete set of model parameters derived from all raw single-particle tracking videos in the supplementary information.

Article and author information

Author details

  1. Yerim Lee

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Carey Phelps

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tao Huang

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barmak Mostofian

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0568-9866
  5. Lei Wu

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ying Zhang

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kai Tao

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Young Hwan Chang

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Philip JS Stork

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joe W Gray

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9225-6756
  11. Daniel M Zuckerman

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    For correspondence
    zuckermd@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7662-2031
  12. Xiaolin Nan

    Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States
    For correspondence
    nan@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0597-0255

Funding

National Institutes of Health (U54 CA209988)

  • Young Hwan Chang
  • Joe W Gray
  • Xiaolin Nan

National Science Foundation (MCB1715823)

  • Daniel M Zuckerman

Damon Runyon Cancer Research Foundation

  • Xiaolin Nan

M J Murdock Charitable Trust

  • Joe W Gray
  • Xiaolin Nan

Prospect Creek Foundation

  • Joe W Gray
  • Xiaolin Nan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,011
    views
  • 473
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yerim Lee
  2. Carey Phelps
  3. Tao Huang
  4. Barmak Mostofian
  5. Lei Wu
  6. Ying Zhang
  7. Kai Tao
  8. Young Hwan Chang
  9. Philip JS Stork
  10. Joe W Gray
  11. Daniel M Zuckerman
  12. Xiaolin Nan
(2019)
High-throughput single-particle tracking reveals nested membrane domains that dictate KRasG12D diffusion and trafficking
eLife 8:e46393.
https://doi.org/10.7554/eLife.46393

Share this article

https://doi.org/10.7554/eLife.46393

Further reading

    1. Physics of Living Systems
    Alex James, Franca Buelow ... Ann Brower
    Short Report

    We use data from 30 countries and find that the more women in a discipline, the lower quality the research in that discipline is evaluated to be and the lower the funding success rate is. This affects men and women, and is robust to age, number of research outputs, and bibliometric measures where such data are available. Our work builds on others’ findings that women’s work is valued less, regardless of who performs that work.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Tingting Yang, Marko S Chavez ... Mohamed Y El-Naggar
    Research Article

    Filamentous multicellular cable bacteria perform centimeter-scale electron transport in a process that couples oxidation of an electron donor (sulfide) in deeper sediment to the reduction of an electron acceptor (oxygen or nitrate) near the surface. While this electric metabolism is prevalent in both marine and freshwater sediments, detailed electronic measurements of the conductivity previously focused on the marine cable bacteria (Candidatus Electrothrix), rather than freshwater cable bacteria, which form a separate genus (Candidatus Electronema) and contribute essential geochemical roles in freshwater sediments. Here, we characterize the electron transport characteristics of Ca. Electronema cable bacteria from Southern California freshwater sediments. Current–voltage measurements of intact cable filaments bridging interdigitated electrodes confirmed their persistent conductivity under a controlled atmosphere and the variable sensitivity of this conduction to air exposure. Electrostatic and conductive atomic force microscopies mapped out the characteristics of the cell envelope’s nanofiber network, implicating it as the conductive pathway in a manner consistent with previous findings in marine cable bacteria. Four-probe measurements of microelectrodes addressing intact cables demonstrated nanoampere currents up to 200 μm lengths at modest driving voltages, allowing us to quantify the nanofiber conductivity at 0.1 S/cm for freshwater cable bacteria filaments under our measurement conditions. Such a high conductivity can support the remarkable sulfide-to-oxygen electrical currents mediated by cable bacteria in sediments. These measurements expand the knowledgebase of long-distance electron transport to the freshwater niche while shedding light on the underlying conductive network of cable bacteria.