Molecular and anatomical organization of the dorsal raphe nucleus

  1. Kee Wui Huang
  2. Nicole E Ochandarena
  3. Adrienne C Philson
  4. Minsuk Hyun
  5. Jaclyn E Birnbaum
  6. Marcelo Cicconet
  7. Bernardo L Sabatini  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
  2. Harvard Medical School, United States

Abstract

The dorsal raphe nucleus (DRN) is an important source of neuromodulators and has been implicated in a wide variety of behavioral and neurological disorders. The DRN is subdivided into distinct anatomical subregions comprised of multiple cell types, and its complex cellular organization has impeded efforts to investigate the distinct circuit and behavioral functions of its subdomains. Here we used single-cell RNA sequencing, in situ hybridization, anatomical tracing, and spatial correlation analysis to map the transcriptional and spatial profiles of cells from the mouse DRN. Our analysis of 39,411 single-cell transcriptomes revealed at least 18 distinct neuron subtypes and 5 serotonergic neuron subtypes with distinct molecular and anatomical properties, including a serotonergic neuron subtype that preferentially innervates the basal ganglia. Our study lays out the molecular organization of distinct serotonergic and non-serotonergic subsystems, and will facilitate the design of strategies for further dissection the DRN and its diverse functions.

Data availability

The sequencing datasets generated in this study are available on the NCBI Gene Expression Omnibus (accession number: GSE134163). R data files containing the processed and annotated scRNA-seq data in the form of Seurat objects are also available on the Harvard Dataverse (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QB5CC8).

The following data sets were generated

Article and author information

Author details

  1. Kee Wui Huang

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicole E Ochandarena

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Adrienne C Philson

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Minsuk Hyun

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jaclyn E Birnbaum

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marcelo Cicconet

    Image and Data Analysis Core, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernardo L Sabatini

    Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    bsabatini@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0095-9177

Funding

National Institute of Neurological Disorders and Stroke (NS103226)

  • Bernardo L Sabatini

Howard Hughes Medical Institute

  • Bernardo L Sabatini

National Institute of Mental Health (MH100568)

  • Bernardo L Sabatini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with protocols approved by the Harvard Standing Committee on Animal Care following guidelines described in the U.S. National Institutes of Health Guide for the Care and Use of Laboratory Animals (HMS IACUC protocol #IS00000571). All surgery was performed under isoflurane anesthesia.

Copyright

© 2019, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,860
    views
  • 2,033
    downloads
  • 179
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kee Wui Huang
  2. Nicole E Ochandarena
  3. Adrienne C Philson
  4. Minsuk Hyun
  5. Jaclyn E Birnbaum
  6. Marcelo Cicconet
  7. Bernardo L Sabatini
(2019)
Molecular and anatomical organization of the dorsal raphe nucleus
eLife 8:e46464.
https://doi.org/10.7554/eLife.46464

Share this article

https://doi.org/10.7554/eLife.46464

Further reading

    1. Neuroscience
    Shuo Zhang, Yan Tian ... Haiyan Wu
    Research Article

    Active inference integrates perception, decision-making, and learning into a united theoretical framework, providing an efficient way to trade off exploration and exploitation by minimizing (expected) free energy. In this study, we asked how the brain represents values and uncertainties (novelty and variability), and resolves these uncertainties under the active inference framework in the exploration-exploitation trade-off. Twenty-five participants performed a contextual two-armed bandit task, with electroencephalogram (EEG) recordings. By comparing the model evidence for active inference and reinforcement learning models of choice behavior, we show that active inference better explains human decision-making under novelty and variability, which entails exploration or information seeking. The EEG sensor-level results show that the activity in the frontal, central, and parietal regions is associated with novelty, while the activity in the frontal and central brain regions is associated with variability. The EEG source-level results indicate that the expected free energy is encoded in the frontal pole and middle frontal gyrus and uncertainties are encoded in different brain regions but with overlap. Our study dissociates the expected free energy and uncertainties in active inference theory and their neural correlates, speaking to the construct validity of active inference in characterizing cognitive processes of human decisions. It provides behavioral and neural evidence of active inference in decision processes and insights into the neural mechanism of human decisions under uncertainties.

    1. Genetics and Genomics
    2. Neuroscience
    Akanksha Bafna, Gareth Banks ... Patrick M Nolan
    Research Article

    The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light–12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.