Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1

  1. Alexandra M Stafford
  2. Cheryl Reed
  3. Harue Baba
  4. Nicole AR Walter
  5. John RK Mootz
  6. Robert W Williams
  7. Kim A Neve
  8. Lev M Fedorov
  9. Aaron J Janowsky
  10. Tamara J Phillips  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Oregon National Primate Research Center, United States
  3. University of Tennessee Health Sciences Center, United States

Abstract

We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 through 8.

Article and author information

Author details

  1. Alexandra M Stafford

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4045-1888
  2. Cheryl Reed

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Harue Baba

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole AR Walter

    Division of Neuroscience, Oregon National Primate Research Center, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John RK Mootz

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert W Williams

    Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kim A Neve

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0109-7345
  8. Lev M Fedorov

    Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Aaron J Janowsky

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tamara J Phillips

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    For correspondence
    phillipt@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7350-6323

Funding

National Institute on Drug Abuse (R01 DA046081)

  • Tamara J Phillips

Veterans Affairs Research Career Scientist Program (Career Scientist award)

  • Tamara J Phillips

Veterans Affairs Research Career Scientist Program (Career Scientist award)

  • Aaron J Janowsky

University of Tennessee Center for Integrative and Translational Science (Center support)

  • Robert W Williams

National Institute on Drug Abuse (P50 DA018165)

  • Aaron J Janowsky

National Institute on Drug Abuse (P50 DA018165)

  • Tamara J Phillips

National Institute on Drug Abuse (U01 DA041579)

  • Tamara J Phillips

National Institute on Drug Abuse (P30 DA044223)

  • Robert W Williams

Department of Veterans Affairs (I01BX002106)

  • Tamara J Phillips

Department of Veterans Affairs (I01BX002758)

  • Aaron J Janowsky

Department of Veterans Affairs (I01BX003279)

  • Kim A Neve

Oregon Health & Science University-Pilot Funding to the Transgenic Mouse Models Shared Resource (University Shared Resource award)

  • Kim A Neve

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Reviewing Editor

  1. Jonathan Flint, University of California, Los Angeles, United States

Ethics

Animal experimentation: All experiments were performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of the VA Portland Health Care System (VAPORHCS), protocol numbers 3169-14 and 3169-16.

Version history

  1. Received: February 28, 2019
  2. Accepted: July 4, 2019
  3. Accepted Manuscript published: July 5, 2019 (version 1)
  4. Accepted Manuscript updated: July 9, 2019 (version 2)
  5. Version of Record published: August 5, 2019 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,130
    views
  • 465
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra M Stafford
  2. Cheryl Reed
  3. Harue Baba
  4. Nicole AR Walter
  5. John RK Mootz
  6. Robert W Williams
  7. Kim A Neve
  8. Lev M Fedorov
  9. Aaron J Janowsky
  10. Tamara J Phillips
(2019)
Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1
eLife 8:e46472.
https://doi.org/10.7554/eLife.46472

Share this article

https://doi.org/10.7554/eLife.46472

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.