Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1

  1. Alexandra M Stafford
  2. Cheryl Reed
  3. Harue Baba
  4. Nicole AR Walter
  5. John RK Mootz
  6. Robert W Williams
  7. Kim A Neve
  8. Lev M Fedorov
  9. Aaron J Janowsky
  10. Tamara J Phillips  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Oregon National Primate Research Center, United States
  3. University of Tennessee Health Sciences Center, United States

Abstract

We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 7.

Article and author information

Author details

  1. Alexandra M Stafford

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4045-1888
  2. Cheryl Reed

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Harue Baba

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole AR Walter

    Division of Neuroscience, Oregon National Primate Research Center, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John RK Mootz

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert W Williams

    Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kim A Neve

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0109-7345
  8. Lev M Fedorov

    Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Aaron J Janowsky

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tamara J Phillips

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    For correspondence
    phillipt@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7350-6323

Funding

National Institute on Drug Abuse (R01 DA046081)

  • Tamara J Phillips

Veterans Affairs Research Career Scientist Program (Career Scientist award)

  • Tamara J Phillips

Veterans Affairs Research Career Scientist Program (Career Scientist award)

  • Aaron J Janowsky

University of Tennessee Center for Integrative and Translational Science (Center support)

  • Robert W Williams

National Institute on Drug Abuse (P50 DA018165)

  • Aaron J Janowsky

National Institute on Drug Abuse (P50 DA018165)

  • Tamara J Phillips

National Institute on Drug Abuse (U01 DA041579)

  • Tamara J Phillips

National Institute on Drug Abuse (P30 DA044223)

  • Robert W Williams

Department of Veterans Affairs (I01BX002106)

  • Tamara J Phillips

Department of Veterans Affairs (I01BX002758)

  • Aaron J Janowsky

Department of Veterans Affairs (I01BX003279)

  • Kim A Neve

Oregon Health & Science University-Pilot Funding to the Transgenic Mouse Models Shared Resource (University Shared Resource award)

  • Kim A Neve

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Ethics

Animal experimentation: All experiments were performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of the VA Portland Health Care System (VAPORHCS), protocol numbers 3169-14 and 3169-16.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,148
    views
  • 466
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra M Stafford
  2. Cheryl Reed
  3. Harue Baba
  4. Nicole AR Walter
  5. John RK Mootz
  6. Robert W Williams
  7. Kim A Neve
  8. Lev M Fedorov
  9. Aaron J Janowsky
  10. Tamara J Phillips
(2019)
Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1
eLife 8:e46472.
https://doi.org/10.7554/eLife.46472

Share this article

https://doi.org/10.7554/eLife.46472

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.