Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1

  1. Alexandra M Stafford
  2. Cheryl Reed
  3. Harue Baba
  4. Nicole AR Walter
  5. John RK Mootz
  6. Robert W Williams
  7. Kim A Neve
  8. Lev M Fedorov
  9. Aaron J Janowsky
  10. Tamara J Phillips  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Oregon National Primate Research Center, United States
  3. University of Tennessee Health Sciences Center, United States

Abstract

We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 7.

Article and author information

Author details

  1. Alexandra M Stafford

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4045-1888
  2. Cheryl Reed

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Harue Baba

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole AR Walter

    Division of Neuroscience, Oregon National Primate Research Center, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John RK Mootz

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert W Williams

    Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kim A Neve

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0109-7345
  8. Lev M Fedorov

    Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Aaron J Janowsky

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tamara J Phillips

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    For correspondence
    phillipt@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7350-6323

Funding

National Institute on Drug Abuse (R01 DA046081)

  • Tamara J Phillips

Veterans Affairs Research Career Scientist Program (Career Scientist award)

  • Tamara J Phillips

Veterans Affairs Research Career Scientist Program (Career Scientist award)

  • Aaron J Janowsky

University of Tennessee Center for Integrative and Translational Science (Center support)

  • Robert W Williams

National Institute on Drug Abuse (P50 DA018165)

  • Aaron J Janowsky

National Institute on Drug Abuse (P50 DA018165)

  • Tamara J Phillips

National Institute on Drug Abuse (U01 DA041579)

  • Tamara J Phillips

National Institute on Drug Abuse (P30 DA044223)

  • Robert W Williams

Department of Veterans Affairs (I01BX002106)

  • Tamara J Phillips

Department of Veterans Affairs (I01BX002758)

  • Aaron J Janowsky

Department of Veterans Affairs (I01BX003279)

  • Kim A Neve

Oregon Health & Science University-Pilot Funding to the Transgenic Mouse Models Shared Resource (University Shared Resource award)

  • Kim A Neve

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Reviewing Editor

  1. Jonathan Flint, University of California, Los Angeles, United States

Ethics

Animal experimentation: All experiments were performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of the VA Portland Health Care System (VAPORHCS), protocol numbers 3169-14 and 3169-16.

Version history

  1. Received: February 28, 2019
  2. Accepted: July 4, 2019
  3. Accepted Manuscript published: July 5, 2019 (version 1)
  4. Accepted Manuscript updated: July 9, 2019 (version 2)
  5. Version of Record published: August 5, 2019 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,096
    views
  • 463
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandra M Stafford
  2. Cheryl Reed
  3. Harue Baba
  4. Nicole AR Walter
  5. John RK Mootz
  6. Robert W Williams
  7. Kim A Neve
  8. Lev M Fedorov
  9. Aaron J Janowsky
  10. Tamara J Phillips
(2019)
Taar1 gene variants have a causal role in methamphetamine intake and response and interact with Oprm1
eLife 8:e46472.
https://doi.org/10.7554/eLife.46472

Share this article

https://doi.org/10.7554/eLife.46472

Further reading

    1. Genetics and Genomics
    Can Hu, Xue-Ting Zhu ... Jin-Qiu Zhou
    Research Article

    Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker’s yeast Saccharomyces cerevisiae, the X- and Y’-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y’-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y’-elements) in telomere maintenance. Deletion of Y’-elements (SY12), X-elements (SY12XYΔ+Y), or both X- and Y’-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y’-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.