Abstract

Squamous cell carcinomas (SCCs) account for the majority of cancer mortalities. Although TP63 is an established lineage-survival oncogene in SCCs, therapeutic strategies have not been developed to target TP63 or it's downstream effectors. In this study we demonstrate that TP63 directly regulates NRG1 expression in human SCC cell lines and that NRG1 is a critical component of the TP63 transcriptional program. Notably, we show that squamous tumors are dependent NRG1 signaling in vivo, in both genetically engineered mouse models and human xenograft models, and demonstrate that inhibition of NRG1 induces keratinization and terminal squamous differentiation of tumor cells, blocking proliferation and inhibiting tumor growth. Together, our findings identify a lineage-specific function of NRG1 in SCCs of diverse anatomic origin.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data file has been provided for Figure 4.

Article and author information

Author details

  1. Ganapati V Hegde

    Discovery Oncology, Genentech Inc, South San Francisco, United States
    For correspondence
    gvhegde@gmail.com
    Competing interests
    Ganapati V Hegde, employee of Genentech Inc at the time of participation in this study.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6473-153X
  2. Cecile de la Cruz

    Translational Oncology, Genentech Inc, South San Francisco, United States
    Competing interests
    Cecile de la Cruz, employee of Genentech Inc at the time of participation in this study.
  3. Jennifer M Giltnane

    Department of Pathology, Genentech Inc, South San Francisco, United States
    Competing interests
    Jennifer M Giltnane, employee of Genentech Inc at the time of participation in this study.
  4. Lisa Crocker

    Translational Oncology, Genentech Inc, South San Francisco, United States
    Competing interests
    Lisa Crocker, employee of Genentech Inc at the time of participation in this study.
  5. Avinashnarayan Venkatanarayan

    Discovery Oncology, Genentech Inc, South San Francisco, United States
    Competing interests
    Avinashnarayan Venkatanarayan, employee of Genentech Inc at the time of participation in this study.
  6. Gabriele Schaefer

    Translational Oncology, Genentech Inc, South San Francisco, United States
    Competing interests
    Gabriele Schaefer, employee of Genentech Inc at the time of participation in this study.
  7. Debra Dunlap

    Pathology, Genentech Inc, South San Francisco, United States
    Competing interests
    Debra Dunlap, employee of Genentech Inc at the time of participation in this study.
  8. Joerg D Hoeck

    Molecular Oncology, Genentech Inc, South San Francisco, United States
    Competing interests
    Joerg D Hoeck, employee of Genentech Inc at the time of participation in this study.
  9. Robert Piskol

    Bioinformatics, Genentech Inc, South San Francisco, United States
    Competing interests
    Robert Piskol, employee of Genentech Inc at the time of participation in this study.
  10. Florian Gnad

    Bioinformatics, Genentech Inc, South San Francisco, United States
    Competing interests
    Florian Gnad, employee of Genentech Inc at the time of participation in this study.
  11. Zora Modrusan

    Department of Molecular Biology, Genentech Inc, South San Francisco, United States
    Competing interests
    Zora Modrusan, employee of Genentech Inc at the time of participation in this study.
  12. Frederic J de Sauvage

    Department of Molecular Biology, Genentech Inc, South San Francisco, United States
    Competing interests
    Frederic J de Sauvage, employee of Genentech Inc at the time of participation in this study.
  13. Christian W Siebel

    Discovery Oncology, Genentech Inc, South San Francisco, United States
    Competing interests
    Christian W Siebel, employee of Genentech Inc at the time of participation in this study.
  14. Erica L Jackson

    Discovery Oncology, Genentech Inc, South San Francisco, United States
    For correspondence
    ericajackso@gmail.com
    Competing interests
    Erica L Jackson, employee of Genentech Inc at the time of participation in this study.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7100-8021

Funding

The authors declare that there was no funding for this work

Ethics

Animal experimentation: All animal studies were approved by the Institutional Animal Care and Use Committee (IACUC) at Genentech. The animal studies included herein were performed based on approved IACUC protocol numbers (LASAR 10-2319A, 16-1304, 16-1304A, 16-0098, 16-1120, 16-1143 and 16-2005, 16-1120).

Copyright

© 2019, Hegde et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,573
    views
  • 360
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ganapati V Hegde
  2. Cecile de la Cruz
  3. Jennifer M Giltnane
  4. Lisa Crocker
  5. Avinashnarayan Venkatanarayan
  6. Gabriele Schaefer
  7. Debra Dunlap
  8. Joerg D Hoeck
  9. Robert Piskol
  10. Florian Gnad
  11. Zora Modrusan
  12. Frederic J de Sauvage
  13. Christian W Siebel
  14. Erica L Jackson
(2019)
NRG1 is a critical regulator of differentiation in TP63-driven squamous cell carcinoma
eLife 8:e46551.
https://doi.org/10.7554/eLife.46551

Share this article

https://doi.org/10.7554/eLife.46551

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.