Self-organised segregation of bacterial chromosomal origins

  1. Andreas Hofmann
  2. Jarno Mäkelä
  3. David J Sherratt
  4. Dieter Heermann
  5. Sean M Murray  Is a corresponding author
  1. Heidelberg University, Germany
  2. University of Oxford, United Kingdom
  3. Max Planck Institute for Terrestrial Microbiology, Germany

Abstract

The chromosomal replication origin region (ori) of characterized bacteria is dynamically positioned throughout the cell cycle. In slowly growing Escherichia coli, ori is maintained at mid-cell from birth until its replication, after which newly replicated sister oris move to opposite quarter positions. Here, we provide an explanation for ori positioning based on the self-organisation of the Structural Maintenance of Chromosomes complex, MukBEF, which forms dynamically positioned clusters on the chromosome. We propose that a non-trivial feedback between the self-organising gradient of MukBEF complexes and the oris leads to accurate ori positioning. We find excellent agreement with quantitative experimental measurements and confirm key predictions. Specifically, we show that oris exhibit biased motion towards MukBEF clusters, rather than mid-cell. Our findings suggest that MukBEF and oris act together as a self-organising system in chromosome organisation-segregation and introduces protein self-organisation as an important consideration for future studies of chromosome dynamics.

Data availability

Experimental source data files have been provided for Figure 1. We also used the ori localisation tracks provided as supplementary data to Kuwada et al., 2014 and the co-localisation curves from Figure 1c of Nolivos et al., 2016.

Article and author information

Author details

  1. Andreas Hofmann

    Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jarno Mäkelä

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. David J Sherratt

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2104-5430
  4. Dieter Heermann

    Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean M Murray

    Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
    For correspondence
    sean.murray@synmikro.mpi-marburg.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2260-0774

Funding

Wellcome (DSJ: 200782/Z/16/Z)

  • Jarno Mäkelä
  • David J Sherratt

Deutsche Forschungsgemeinschaft (GSC 220)

  • Andreas Hofmann

Max-Planck-Gesellschaft (Open-access funding)

  • Sean M Murray

Human Frontier Science Program (RGP0014/2014)

  • Andreas Hofmann

Deutsche Forschungsgemeinschaft (INST 35/1134-1 FUGG)

  • Andreas Hofmann
  • Dieter Heermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: March 5, 2019
  2. Accepted: August 9, 2019
  3. Accepted Manuscript published: August 9, 2019 (version 1)
  4. Version of Record published: August 20, 2019 (version 2)

Copyright

© 2019, Hofmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,857
    Page views
  • 369
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas Hofmann
  2. Jarno Mäkelä
  3. David J Sherratt
  4. Dieter Heermann
  5. Sean M Murray
(2019)
Self-organised segregation of bacterial chromosomal origins
eLife 8:e46564.
https://doi.org/10.7554/eLife.46564

Further reading

    1. Computational and Systems Biology
    Damiano Sgarbossa, Umberto Lupo, Anne-Florence Bitbol
    Research Article Updated

    Computational models starting from large ensembles of evolutionarily related protein sequences capture a representation of protein families and learn constraints associated to protein structure and function. They thus open the possibility for generating novel sequences belonging to protein families. Protein language models trained on multiple sequence alignments, such as MSA Transformer, are highly attractive candidates to this end. We propose and test an iterative method that directly employs the masked language modeling objective to generate sequences using MSA Transformer. We demonstrate that the resulting sequences score as well as natural sequences, for homology, coevolution, and structure-based measures. For large protein families, our synthetic sequences have similar or better properties compared to sequences generated by Potts models, including experimentally validated ones. Moreover, for small protein families, our generation method based on MSA Transformer outperforms Potts models. Our method also more accurately reproduces the higher-order statistics and the distribution of sequences in sequence space of natural data than Potts models. MSA Transformer is thus a strong candidate for protein sequence generation and protein design.

    1. Cancer Biology
    2. Computational and Systems Biology
    Matthew Roberts, Julia Ogden ... Carlos Lopez-Garcia
    Tools and Resources Updated

    Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low- and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE (Exploring Transcriptomes of Bronchial Lesions), an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two- and multiple-group comparisons, interrogation of genes of interests, and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.