Myosin II isoforms play distinct roles in adherens junction biogenesis

  1. Mélina L Heuzé  Is a corresponding author
  2. Gautham Hari Narayana Sankara Narayana
  3. Joseph D'Alessandro
  4. Victor Cellerin
  5. Tien Dang
  6. David S Williams
  7. Jan CM Van Hest
  8. Philippe Marcq
  9. René-Marc Mège  Is a corresponding author
  10. Benoit Ladoux  Is a corresponding author
  1. Université de Paris and CNRS UMR 7592, France
  2. Swansea University, United Kingdom
  3. Eindhoven University of Technology, Netherlands
  4. Sorbonne Université and CNRS UMR 7636, France
8 figures, 3 videos, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
Development of an in vitro system for the study of junction biogenesis.

(a) Sequential steps for controlled initiation and visualization of junction biogenesis. The two cells are initially confined on a pair of fibronectin-coated 5 µm-away patterns (T0). When desired, …

https://doi.org/10.7554/eLife.46599.002
Figure 1—source data 1

Development of anin vitrosystem for the study of junction biogenesis.

https://doi.org/10.7554/eLife.46599.005
Figure 1—figure supplement 1
Reversal of nucleus-centrosome polarity axis after cell-cell contact.

(a) Scheme depicting the switchable micro-patterning strategy used for confinement release (click chemistry). (b) Spinning disk image sequence of GFP-E-cadherin and RFP-Pericentrin of doubled …

https://doi.org/10.7554/eLife.46599.003
Figure 1—figure supplement 1—source data 1

Reversal of nucleus-centrosome polarity axis after cell-cell contact.

https://doi.org/10.7554/eLife.46599.004
Figure 2 with 1 supplement
NMIIA and NMIIB are both required for proper junction biogenesis.

(a, b) Left panels: Representative immunoblots showing the isoform specific knockdown of NMIIA (a) and NMIIB (b) in NMIIA KD and NMIIB KD MDCK cells. GAPDH expression levels were used as loading …

https://doi.org/10.7554/eLife.46599.008
Figure 2—source data 1

NMIIA and NMIIB are both required for proper junction biogenesis.

https://doi.org/10.7554/eLife.46599.010
Figure 2—figure supplement 1
Isoform-specific NMII Knock-down in MDCK cells.

(a, b) Original uncropped Immunoblots presented in Figure 2a (a) and 2b (b).

https://doi.org/10.7554/eLife.46599.009
Figure 3 with 2 supplements
NMIIB, but not NMIIA, localizes to early AJs.

(a, b) Representative confocal images and zoom boxes of GFP-E-cadherin-expressing MDCK cell doublets fixed 20 hr after BCN-RGD addition and immuno-stained for NMIIA (a) or NMIIB (b) Scale bar: 10 …

https://doi.org/10.7554/eLife.46599.012
Figure 3—source data 1

NMIIB, but not NMIIA, localizes to early AJs.

https://doi.org/10.7554/eLife.46599.017
Figure 3—figure supplement 1
NMIIA and NMIIB exhibit differential localizations in early AJs.

(a, b) Representative confocal images of MDCK cell doublets fixed 20 hr after BCN-RGD addition and stained for F-actin, NMIIA and NMIIC (a) or F-actin, NMIIB and Vimentin (b) as indicated. Scale …

https://doi.org/10.7554/eLife.46599.013
Figure 3—figure supplement 1—source data 1

NMIIA and NMIIB exhibit differential localizations in early AJs.

https://doi.org/10.7554/eLife.46599.014
Figure 3—figure supplement 2
NMIIB, but not NMIIA, localizes to early epithelial AJs.

(a) Representative confocal images of WT MDCK cells plated on fibronectin-coated glass for 1 or 3 days and stained for F-actin, NMIIA and NMIIB. Scale bar: 10 µm. (b) Representative confocal images …

https://doi.org/10.7554/eLife.46599.015
Figure 3—figure supplement 2—source data 1

NMIIB, but not NMIIA, localizes to early epithelial AJs.

https://doi.org/10.7554/eLife.46599.016
NMIIB localizes to a junctional actin network distinct from NMIIA-associated actin.

(a–b) SIM (Structured Illumination Microscopy) images of WT MDCK cells fixed 20 hr after addition of BCN-RGD and stained as indicated. Scale bar: 3 µm. (c) Relative intensity profiles (raw and …

https://doi.org/10.7554/eLife.46599.018
Figure 4—source data 1

NMIIB localizes to a junctional actin network distinct from NMIIA-associated actin.

https://doi.org/10.7554/eLife.46599.019
Figure 5 with 1 supplement
NMIIB supports juxtamembrane actin organization and regulates α-catenin unfolding.

(a) SIM (Structured Illumination Microscopy) images of junctional areas from Ctrl, NMIIA KD and NMIIB KD cells fixed 20 hr after addition of BCN-RGD and stained for F-actin and β-catenin. Scale bar: …

https://doi.org/10.7554/eLife.46599.020
Figure 5—source data 1

NMIIB supports juxtamembrane actin organization and regulates α-catenin unfolding.

https://doi.org/10.7554/eLife.46599.022
Figure 5—figure supplement 1
NMIIB supports junctional actin organization.

Related to Figure 5a: other examples of junctional actin organization in Ctrl, NMIIA KD and NMIIB KD cells. (a, b) SIM (Structured Illumination Microscopy) images of junctional area from Ctrl, NMIIA …

https://doi.org/10.7554/eLife.46599.021
Figure 6 with 3 supplements
NMIIA and NMIIB are both required for establishment of proper inter-cellular stress.

(a) Heat map with vectorial field of traction forces (left panels) and ellipse representation of intra-cellular stress (right panel, the two axes represent the direction and magnitude of the …

https://doi.org/10.7554/eLife.46599.023
Figure 6—source data 1

NMIIA and NMIIB are both required for establishment of proper inter-cellular stress.

https://doi.org/10.7554/eLife.46599.030
Figure 6—figure supplement 1
NMIIA regulates cell adhesion and traction forces on fibronectin.

(a) Representative confocal images of paxillin and F-actin staining of Ctrl, NMIIA KD and NMIIB KD single cells plated on fibronectin-coated glass coverslip for 16 hr. Scale bar: 10 µm. (b, c) …

https://doi.org/10.7554/eLife.46599.024
Figure 6—figure supplement 1—source data 1

NMIIA regulates cell adhesion and traction forces on fibronectin.

https://doi.org/10.7554/eLife.46599.025
Figure 6—figure supplement 2
NMIIB favors E-cadherin clustering on E-cadherin-coated substrate.

(a) Confocal images with zoom boxes of Ctrl, NMIIA KD and NMIIB KD cells plated on E-cadherin-coated glass for 6 hr and immuno-stained for β-catenin and F-actin. Scale bar: 10 µm. (b) Scheme …

https://doi.org/10.7554/eLife.46599.026
Figure 6—figure supplement 2—source data 1

NMIIB favors E-cadherin clustering on E-cadherin-coated substrate.

https://doi.org/10.7554/eLife.46599.027
Figure 6—figure supplement 3
NMIIA and NMIIB are both required for establishment of proper inter-cellular stress.

(a) Scheme depicting the junction subdomains and the orientation of traction forces relative to the junction axis quantified in (b) and (c). (b, c) Scatter plots with mean + /- SEM representing the …

https://doi.org/10.7554/eLife.46599.028
Figure 6—figure supplement 3—source data 1

NMIIA and NMIIB are both required for establishment of proper inter-cellular stress.

https://doi.org/10.7554/eLife.46599.029
Proposed model for the role of NMIIA and NMIIB during junction biogenesis.

Upper panels: organization of early cell-cell contacts of Ctrl, NMIIA KD and NMIIB KD cells. Lower panels: proposed molecular organization of early junctions. Middle panels: distribution of …

https://doi.org/10.7554/eLife.46599.031
Author response image 1
NMIIB localizes to early AJs.

(a) Representative confocal images and zoom boxes of GFP-E-cadherin-expressing MDCK cell doublets fixed 20h after BCN-RGD addition and immuno-stained for NMIIB. Scale bar: 10 μm. (b) Relative …

https://doi.org/10.7554/eLife.46599.034

Videos

Video 1
Dynamic of junction formation on reversible micropatterns.

Spinning disk movie showing contact formation between two MDCK cells expressing GFP-E-cadherin and stained with Hoechst. Scale bar: 10 µm.

https://doi.org/10.7554/eLife.46599.006
Video 2
Dynamic of junction formation in Y27-treated cells.

Spinning disk movie of MDCK cells expressing GFP-E-cadherin, stained with Hoechst and treated with 50 µM Y27. Scale bar: 10 µm.

https://doi.org/10.7554/eLife.46599.007
Video 3
Dynamic of junction formation in Ctrl, NMIIA KD and NMIIB KD cells.

Epi-fluorescence movies of Ctrl, NMIIA KD and NMIIB KD MDCK cells expressing GFP-E-cadherin. Scale bar: 10 µm.

https://doi.org/10.7554/eLife.46599.011

Tables

Key resources table
Reagent type
(species)
or resource
DesignationSource or
reference
IdentifiersAdditional information
Cell line (Canis familiaris, dog)MDCKATCCATCC CCL-34
Cell line (H. sapiens)Caco-2ATCCATCC HTB-37Kindly provided by S.Robine
(Institut Cuire/CNRS, Paris)
Antibodyanti-NMIIA rabbit polyclonalBiolegend9098011/100 for IF and 1/1000 for WB
Antibodyanti-NMIIA mouse monoclonalAbcamab554561/100 for IF and 1/1000 for WB
Antibodyrabbit anti-NMIIB polyclonalBiolegend9099011/100 for IF and 1/1000 for WB
Antibodyanti-β-catenin rabbit polyclonalSigma-AldrichC22061/100 for IF
Antibodyanti-β-catenin mouse monoclonalBD Biosciences6101561/100 for IF
Antibodyrecombinant anti-paxillin rabbit monoclonal antibodyAbcamAb320841/100 for IF
Antibodymouse anti-GAPDHProteinTech60004–1-Ig1/100 for IF
Antibodymouse anti-Arp3Sigma-AldrichA59791/100 for IF
Antibodymouse anti-E-cadherinBD Biosciences6101811/100 for IF
Antibodyrabbit anti-α-catenin polyclonalSigma-AldrichC-20811/100 for IF
Antibodyrat anti-α18-catenin monoclonalgenerously provided by A. Nagafuchi, (Kumamoto University, Japan)1/100 for IF
AntibodyAlexa488-Life TechnologiesA11039, A11055, A110131/250 for IF
AntibodyAlexa568-Life TechnologiesA11004, A11011, A110771/250 for IF
AntibodyAlexa647-Life TechnologiesA31571, A315731/250 for IF
Chemical compound, drugAlexa (488) -coupled phalloidinsInvitrogenA123791/250 for IF
Chemical compound, drugAlexa (555 or 647) -coupled phalloidinsLife TechnologiesA34055, A222871/250 for IF
OtherHoechst 34580ThermoFisherH35701/10000 for IF
AntibodyHorseradish peroxidase-coupled anti-mouse IgGsSigma-AldrichA90441/10000 for WB
AntibodyHorseradish peroxidase-coupled anti-rabbit IgGsPierce1/10000 for WB
Chemical compound, drugMitomycin CSigma-AldrichM248710 μg/ml for 1 hr
Chemical compound, drugY-27632 dihydrochlorideSigma-AldrichY050350 μM
OtherAPP (Azido-Poly-lysine Poly (ethylene glycol))Inspired protocol from M. van Dongen, Matthieu Pielhttps://doi.org/10.1002/adma.201204474Inspired protocol from M. van Dongen, Matthieu Piel
Peptide, recombinant proteinBCN-RGD peptide (BCN: bicyclo[6.1.0]- nonyne, coupled to RGD: peptide sequence Arg-Gly-Asp)Inspired protocol from M. van Dongen, Matthieu Pielhttps://doi.org/10.1002/adma.201204474Inspired protocol from M. van Dongen, Matthieu Piel
Commercial assay or kitDMEM (containing Glutamax, High Glucose and Pyruvate)Life Technologies31966–021
Commercial assay or kitFluorobrite DMEMThermo FisherA18967-01
Commercial assay or kitPenicillin/StreptomycinLife Technologies15140–122
Commercial assay or kitFoetal Bovine SerumLife TechnologiesS1810-50010% FBS in DMEM
Commercial assay or kitgeneticinLife Technologies10131–019
Chemical compound, drugTrypsinLife Technologies25300–054
Genetic reagent (Plasmid)pLKO.1-puroSigma-AldrichSHC002
Genetic reagent (Plasmid)MYH9Sigma-Aldrichtranscript ID: ENSCAFT00000002643.3TTGGAGCCATACAACAAATAC for NMIIA
Genetic reagent (Plasmid)MYH10Sigma-Aldrichtranscript ID: ENSCAFT00000027478TCGGGCAGCTCTACAAAGAAT for NMIIB
Genetic reagent (Plasmid)RFP-Pericentrinkindly provided M. Coppey, Institut Jacques Monod, Pariskindly provided M. Coppey, Institut Jacques Monod, Paris
Genetic reagent (Plasmid)m-Cherry cortactinkindly provided by Alexis Gautreau, Biochemisty laboratory, Ecole polytechnique, Francehttps://portail.polytechnique.edu/bioc/en/gautreaupcDNA5-FRT-GFP-mCherry-3pGW back bone (1740-pcDNAM FRTPC-mCherry Cortactine)
Genetic reagent (Plasmid)mCherry Myosin IIBAddgene55107
Genetic reagent (Plasmid)CMV-GFP-NMHC II-AAddgene11347
Chemical compound, drugprotease inhibitor cocktailRoche27368400
Chemical compound, drugphosphataseinhibitor (Phosphostop)Roche4906837001
Commercial assay or kitBradford assayBioRad500–0006
Commercial assay or kit4–12% Bis-Tris gelNovexNP0335
Commercial assay or kitSupersignal west femto maximum sensitivity substrateThermoFisher34095
Commercial assay or kitLookOut Mycoplasma PCR detection KitSigma-AldrichMP0035
Chemical compound, drugparaformaldehydeThermo Scientific22980
Chemical compound, drugFluoromount-G mounting mediaSouthern Biotech
Peptide, recombinant proteinfibronectinMerck MilliporeFC010
Chemical compound, drugAPTESSigma-AldrichA3648
Chemical compound, drugEDC-HClThermo Scientific229802 mM freshly prepared in 0.1M MES pH4.7
Chemical compound, drugNHSSigma-Aldrich1306725 mM
Peptide, recombinant proteinrecombinant human E-cadherinR and D systems8505-EC1 μg
Chemical compound, drugCy 52–276 A and Cy 52–276 B silicone elastomerDow corning
Chemical compound, drugcarboxylated red fluorescent beadsInvitrogenF8801
Software, algorithmFIJI-Image Jhttps://imagej.net/Fiji/DownloadsImage analysis were done using Fiji-Image J and plugins
Software, algorithmMATLAbMATLABTraction force, PIV analysis were done using alogorithms developed in lab to analyse traction force
Software, algorithmPhotoshop and IllustratorAdobeImages were mounted using these softwares
Software, algorithmGraphPad prismGraphPad PrismGraphs and statistical tests were done using GraphPad Prism

Additional files

Download links