A Drosophila model of neuronal ceroid lipofuscinosis CLN4 reveals a hypermorphic gain of function mechanism

  1. Elliot Imler
  2. Jin Sang Pyon
  3. Selina Kindelay
  4. Meaghan Torvund
  5. Yong-quan Zhang
  6. Sreeganga S Chandra
  7. Konrad E Zinsmaier  Is a corresponding author
  1. University of Arizona, United States
  2. Yale University, United States

Abstract

The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by mutations in the synaptic vesicle (SV) protein CSPα. We developed animal models of CLN4 by expressing CLN4 mutant human CSPα (hCSPα) in Drosophila neurons. Similar to patients, CLN4 mutations induced excessive oligomerization of hCSPα and premature lethality in a dose-dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPα accumulated abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4 mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4 phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain of function mutations that drive excessive oligomerization and impair membrane trafficking.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Elliot Imler

    Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jin Sang Pyon

    Undergraduate Program in Neuroscience and Cognitive Science Department of Molecular, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Selina Kindelay

    Undergraduate Program in Neuroscience and Cognitive Science Department of Molecular, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meaghan Torvund

    Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yong-quan Zhang

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sreeganga S Chandra

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9035-1733
  7. Konrad E Zinsmaier

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    For correspondence
    kez4@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9992-6238

Funding

National Institute of Neurological Disorders and Stroke (R01NS083849)

  • Sreeganga S Chandra

National Institute of Neurological Disorders and Stroke (R21NS094809)

  • Konrad E Zinsmaier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Imler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,412
    views
  • 220
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elliot Imler
  2. Jin Sang Pyon
  3. Selina Kindelay
  4. Meaghan Torvund
  5. Yong-quan Zhang
  6. Sreeganga S Chandra
  7. Konrad E Zinsmaier
(2019)
A Drosophila model of neuronal ceroid lipofuscinosis CLN4 reveals a hypermorphic gain of function mechanism
eLife 8:e46607.
https://doi.org/10.7554/eLife.46607

Share this article

https://doi.org/10.7554/eLife.46607

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Pamela Garcia-Saldivar, Cynthia de León ... Hugo Merchant
    Research Article Updated

    We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.

    1. Computational and Systems Biology
    2. Neuroscience
    Matthieu K Chardon, Y Curtis Wang ... Charles J Heckman
    Research Article

    In this study, we develop new reverse engineering (RE) techniques to identify the organization of the synaptic inputs generating firing patterns of populations of neurons. We tested these techniques in silico to allow rigorous evaluation of their effectiveness, using remarkably extensive parameter searches enabled by massively-parallel computation on supercomputers. We chose spinal motoneurons as our target neural system, since motoneurons process all motor commands and have well-established input-output properties. One set of simulated motoneurons was driven by 300,000+ simulated combinations of excitatory, inhibitory, and neuromodulatory inputs. Our goal was to determine if these firing patterns had sufficient information to allow RE identification of the input combinations. Like other neural systems, the motoneuron input-output system is likely non-unique. This non-uniqueness could potentially limit this RE approach, as many input combinations can produce similar outputs. However, our simulations revealed that firing patterns contained sufficient information to sharply restrict the solution space. Thus, our RE approach successfully generated estimates of the actual simulated patterns of excitation, inhibition, and neuromodulation, with variances accounted for ranging from 75–90%. It was striking that nonlinearities induced in firing patterns by the neuromodulation inputs did not impede RE, but instead generated distinctive features in firing patterns that aided RE. These simulations demonstrate the potential of this form of RE analysis. It is likely that the ever-increasing capacity of supercomputers will allow increasingly accurate RE of neuron inputs from their firing patterns from many neural systems.