A Drosophila model of neuronal ceroid lipofuscinosis CLN4 reveals a hypermorphic gain of function mechanism

  1. Elliot Imler
  2. Jin Sang Pyon
  3. Selina Kindelay
  4. Meaghan Torvund
  5. Yong-quan Zhang
  6. Sreeganga S Chandra
  7. Konrad E Zinsmaier  Is a corresponding author
  1. University of Arizona, United States
  2. Yale University, United States

Abstract

The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by mutations in the synaptic vesicle (SV) protein CSPα. We developed animal models of CLN4 by expressing CLN4 mutant human CSPα (hCSPα) in Drosophila neurons. Similar to patients, CLN4 mutations induced excessive oligomerization of hCSPα and premature lethality in a dose-dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPα accumulated abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4 mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4 phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain of function mutations that drive excessive oligomerization and impair membrane trafficking.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Elliot Imler

    Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jin Sang Pyon

    Undergraduate Program in Neuroscience and Cognitive Science Department of Molecular, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Selina Kindelay

    Undergraduate Program in Neuroscience and Cognitive Science Department of Molecular, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meaghan Torvund

    Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yong-quan Zhang

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sreeganga S Chandra

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9035-1733
  7. Konrad E Zinsmaier

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    For correspondence
    kez4@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9992-6238

Funding

National Institute of Neurological Disorders and Stroke (R01NS083849)

  • Sreeganga S Chandra

National Institute of Neurological Disorders and Stroke (R21NS094809)

  • Konrad E Zinsmaier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Imler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,475
    views
  • 226
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elliot Imler
  2. Jin Sang Pyon
  3. Selina Kindelay
  4. Meaghan Torvund
  5. Yong-quan Zhang
  6. Sreeganga S Chandra
  7. Konrad E Zinsmaier
(2019)
A Drosophila model of neuronal ceroid lipofuscinosis CLN4 reveals a hypermorphic gain of function mechanism
eLife 8:e46607.
https://doi.org/10.7554/eLife.46607

Share this article

https://doi.org/10.7554/eLife.46607

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.