1. Biochemistry and Chemical Biology
  2. Computational and Systems Biology
Download icon

Profiling the E. coli membrane interactome captured in peptidisc libraries

Tools and Resources
  • Cited 20
  • Views 3,965
  • Annotations
Cite this article as: eLife 2019;8:e46615 doi: 10.7554/eLife.46615

Abstract

Protein-correlation-profiling (PCP), in combination with quantitative proteomics, has emerged as a high-throughput method for the rapid identification of dynamic protein complexes in native conditions. While PCP has been successfully applied to soluble proteomes, characterization of the membrane interactome has lagged, partly due to the necessary use of detergents to maintain protein solubility. Here, we apply the peptidisc, a 'one-size fits all' membrane mimetic, for the capture of the Escherichia coli cell envelope proteome and its high-resolution fractionation in the absence of detergent. Analysis of the SILAC-labeled peptidisc library via PCP allows generation of over 4900 possible binary interactions out of >700,000 random associations. Using well-characterized membrane protein systems such as the SecY translocon, the Bam complex and the MetNI transporter, we demonstrate that our dataset is a useful resource for identifying transient and surprisingly novel protein interactions, some of them with profound biological implications, and many of them largely undetected by standard detergent-based purification. The peptidisc workflow applied to the proteomic field is a promising novel approach to characterize membrane protein interactions under native expression conditions and without genetic manipulation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Michael Luke Carlson

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3807-6516
  2. R Greg Stacey

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4496-8131
  3. John William Young

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3541-509X
  4. Irvinder Singh Wason

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
  5. Zhiyu Zhao

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
  6. David G Rattray

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
  7. Nichollas Scott

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2556-8316
  8. Craig H Kerr

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
  9. Mohan Babu

    Department of Biochemistry, University of Regina, Regina, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4118-6406
  10. Leonard J Foster

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8551-4817
  11. Franck Van Hoa Duong

    Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    For correspondence
    fduong@mail.ubc.ca
    Competing interests
    Franck Van Hoa Duong, has a website which sells the peptide used in this study.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7328-6124

Funding

Canadian Institutes of Health Research

  • Franck Van Hoa Duong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Publication history

  1. Received: March 7, 2019
  2. Accepted: July 30, 2019
  3. Accepted Manuscript published: July 31, 2019 (version 1)
  4. Version of Record published: August 16, 2019 (version 2)

Copyright

© 2019, Carlson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,965
    Page views
  • 670
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Khanh Dinh Quoc Nguyen et al.
    Research Article Updated

    G protein-coupled receptors (GPCRs) have long been shown to exist as oligomers with functional properties distinct from those of the monomeric counterparts, but the driving factors of oligomerization remain relatively unexplored. Herein, we focus on the human adenosine A2A receptor (A2AR), a model GPCR that forms oligomers both in vitro and in vivo. Combining experimental and computational approaches, we discover that the intrinsically disordered C-terminus of A2AR drives receptor homo-oligomerization. The formation of A2AR oligomers declines progressively with the shortening of the C-terminus. Multiple interaction types are responsible for A2AR oligomerization, including disulfide linkages, hydrogen bonds, electrostatic interactions, and hydrophobic interactions. These interactions are enhanced by depletion interactions, giving rise to a tunable network of bonds that allow A2AR oligomers to adopt multiple interfaces. This study uncovers the disordered C-terminus as a prominent driving factor for the oligomerization of a GPCR, offering important insight into the effect of C-terminus modification on receptor oligomerization of A2AR and other GPCRs reconstituted in vitro for biophysical studies.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Fiona Haward et al.
    Research Article

    Shuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells and tissues derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.