1. Plant Biology
Download icon

Plant Stress: Hitting pause on the cell cycle

  1. Thomas Eekhout
  2. Lieven De Veylder  Is a corresponding author
  1. Ghent University, Belgium
  2. VIB Center for Plant Systems Biology, Belgium
Insight
  • Cited 2
  • Views 1,827
  • Annotations
Cite this article as: eLife 2019;8:e46781 doi: 10.7554/eLife.46781

Abstract

Two recently discovered transcription factors stop cells from dividing when plants face extreme heat and DNA damage.

Main text

When something goes awry during the cell cycle – for example, if DNA gets broken during replication – checkpoint mechanisms put the cycle on pause so that the cell can repair the damage before dividing. In mammals, failure to activate these checkpoints can lead to cancer.

The p53 tumor suppressor is a mammalian transcription factor which controls the genes that stop the cell cycle, repair DNA, and even trigger cell death in response to DNA damage (Kastenhuber and Lowe, 2017). Many cell cycle and DNA repair genes are conserved between vertebrates and plants, yet a p53 ortholog has never been found in any plant genome sequence. Instead, plants use SOG1 (short for suppressor of gamma-response 1), a plant-specific transcription factor that also arrests the cell cycle, coordinates DNA repair and promotes cell death.

Recently, two independent studies have demonstrated that SOG1 regulates the expression of almost all the genes that are induced when DNA is damaged, including other transcription factors from the same family (Bourbousse et al., 2018; Ogita et al., 2018). Now, in eLife, Masaaki Umeda and colleagues from the Nara Institute of Science and Technology, the RIKEN Center for Sustainable Resource Science and the RIKEN Cluster for Pioneering Research – with Naoki Takahashi as first author – report on the roles of two of these SOG1-like transcription factors, ANAC044 and ANAC085 (Takahashi et al., 2019).

In plants, SOG1 can bind to the promoter regions of these factors, and it encourages the transcription of these genes upon DNA damage. Knockout experiments show that the ANAC044 and ANAC085 proteins are not necessary to repair DNA; instead, they stop the cell cycle just before division by increasing the levels of transcription factors called Rep-MYBs (where Rep is short for repressive). Once stabilized, these factors can bind to and inhibit genes involved in the progression of cell division (Ito et al., 2001). When the cells are ready to divide, Rep-MYBs are marked for destruction, freeing up the genes that promote division so that they can be activated by other transcription factors (Chen et al., 2017).

Rep-MYBs do not accumulate when the genes for ANAC044 and ANAC085 are knocked out. The roots of mutant plants that lack both of these genes can therefore keep growing when agents that damage DNA are present. However, these double knockouts do not show a difference in the levels of RNA transcripts of Rep-MYBs. This prompted Takahashi et al. to speculate that an intermediate molecular step allows ANAC044 and ANAC085 to control the levels of Rep-MYBs after transcription, possibly by inhibiting the machinery that labels and degrades these proteins.

Upon DNA damage, two kinases called ATM and ATR phosphorylate specific sites on SOG1 so that it can bind to DNA and perform its regulatory role (Sjogren et al., 2015; Yoshiyama et al., 2013; Ogita et al., 2018). Both ANAC044 and ANAC085 have sequences that are very similar to those of SOG1, but they appear to lack these phosphorylation sites. Moreover, overexpression of ANAC044 only inhibits the cell cycle if the DNA is damaged. It is therefore possible that this transcription factor only works in the presence of ANAC085, or that its activity is controlled by other kinases.

Overall, the work by Takahashi et al. shows that plants have harnessed SOG1-like transcription factors to regulate the network of genes that respond to DNA damage. These results represent a major step in unraveling the hierarchical control of the DNA damage response in plants. So far, SOG1 appears to be the master regulator, delegating downstream responses among various regulators (Figure 1), with ANAC044 and ANAC085 stopping the cell cycle before division. Takahashi et al. also report that when plants are exposed to high temperatures, ANAC044 and ANAC085 help to halt the cell cycle. Therefore, these two transcription factors could be part of a central hub that delays cell division in response to a diverse set of stresses.

Hierarchical control of the DNA damage response in plants.

In plant cells, the kinases ATM and ATR are activated by different types of DNA damage. These enzymes go on to phosphorylate and activate the SOG1 transcription factor, which then binds to and switches on its target genes. These include (i) genes involved in DNA repair through homologous recombination (HR); (ii) the genes for ANAC044 and ANAC085, the newly identified transcription factors that help to stop the cell cycle; (iii) genes that trigger a cell death program (for when damage is too severe). ANAC044 and ANAC085 work by increasing the levels of Rep-MYB transcription factors. If stabilized, these proteins maintain the cells in the phase just before division (G2/M arrest) by binding to and repressing the genes essential for cell division to proceed. It is still unclear how Rep-MYBs are stabilized, or how SOG1 and ANAC044/ANAC085 may trigger cell death (Takahashi et al., 2019).

References

Article and author information

Author details

  1. Thomas Eekhout

    Thomas Eekhout is in the Department of Plant Biotechnology and Bioinformatics, Ghent University, and the VIB Center for Plant Systems Biology, Ghent, Belgium

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2878-1553
  2. Lieven De Veylder

    Lieven De Veylder is in the Department of Plant Biotechnology and Bioinformatics, Ghent University, and the VIB Center for Plant Systems Biology, Ghent, Belgium

    For correspondence
    livey@psb.vib-ugent.be
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1150-4426

Publication history

  1. Version of Record published: April 9, 2019 (version 1)

Copyright

© 2019, Eekhout and De Veylder

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,827
    Page views
  • 219
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Tatiana P Soares da Costa et al.
    Research Article

    Weeds are becoming increasingly resistant to our current herbicides, posing a significant threat to agricultural production. Therefore, new herbicides with novel modes of action are urgently needed. In this study, we exploited a novel herbicide target, dihydrodipicolinate synthase (DHDPS), which catalyses the first and rate-limiting step in lysine biosynthesis. The first class of plant DHDPS inhibitors with micromolar potency against Arabidopsis thaliana DHDPS were identified using a high throughput chemical screen. We determined that this class of inhibitors binds to a novel and unexplored pocket within DHDPS, which is highly conserved across plant species. The inhibitors also attenuated the germination and growth of A. thaliana seedlings and confirmed their pre-emergence herbicidal activity in soil-grown plants. These results provide proof-of-concept that lysine biosynthesis represents a promising target for the development of herbicides with a novel mode of action to tackle the global rise of herbicide resistant weeds.

    1. Genetics and Genomics
    2. Plant Biology
    Ranjith K Papareddy et al.
    Research Article

    DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Our results are also consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing transcriptional activation reducing their expression. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.