Structure based inhibitors of Amyloid Beta core suggest a common interface with Tau

  1. Sarah L Griner  Is a corresponding author
  2. Paul Seidler
  3. Jeannette Bowler
  4. Kevin A Murray
  5. Tianxiao Peter Yang
  6. Shruti Sahay
  7. Michael R Sawaya
  8. Duilio Cascio
  9. Jose A Rodriguez
  10. Stephan Philipp
  11. Justyna Sosna
  12. Charles G Glabe
  13. Tamir Gonen
  14. David S Eisenberg  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Los Angeles, United States
  2. University of California, Irvine, United States
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Alzheimer's disease (AD) pathology is characterized by plaques of amyloid beta (Aβ) and neurofibrillary tangles of tau. Aβ aggregation is thought to occur at early stages of the disease, and ultimately gives way to the formation of tau tangles which track with cognitive decline in humans. Here, we report the crystal structure of an Aβ core segment determined by MicroED and in it, note characteristics of both fibrillar and oligomeric structure. Using this structure, we designed peptide-based inhibitors that reduce Aβ aggregation and toxicity of already-aggregated species. Unexpectedly, we also found that these inhibitors reduce the efficiency of Aβ-mediated tau aggregation, and moreover reduce aggregation and self-seeding of tau fibrils. The ability of these inhibitors to interfere with both Aβ and tau seeds suggests these fibrils share a common epitope, and supports the hypothesis that cross-seeding is one mechanism by which amyloid is linked to tau aggregation and could promote cognitive decline.

Data availability

Diffraction data have been deposited in PDB under the accession code 6O4JSource Data for Toxicity and Seeding data are provided (Figures 2-7)

The following data sets were generated

Article and author information

Author details

  1. Sarah L Griner

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    sgriner@ucla.edu
    Competing interests
    No competing interests declared.
  2. Paul Seidler

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Jeannette Bowler

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Kevin A Murray

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Tianxiao Peter Yang

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4479-5154
  6. Shruti Sahay

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Michael R Sawaya

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Duilio Cascio

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Jose A Rodriguez

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Stephan Philipp

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  11. Justyna Sosna

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  12. Charles G Glabe

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  13. Tamir Gonen

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9254-4069
  14. David S Eisenberg

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    david@mbi.ucla.edu
    Competing interests
    David S Eisenberg, is a SAB member and equity holder in ADRx, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2432-5419

Funding

National Institutes of Health (R01 AG029430)

  • Sarah L Griner
  • Paul Seidler
  • Jeannette Bowler
  • Kevin A Murray
  • Tianxiao Peter Yang
  • Shruti Sahay
  • Michael R Sawaya
  • Duilio Cascio
  • Jose A Rodriguez
  • David S Eisenberg

Howard Hughes Medical Institute

  • Sarah L Griner
  • Paul Seidler
  • Jeannette Bowler
  • Kevin A Murray
  • Tianxiao Peter Yang
  • Shruti Sahay
  • Michael R Sawaya
  • Duilio Cascio
  • Jose A Rodriguez
  • Tamir Gonen
  • David S Eisenberg

Cure Alzheimer's Fund

  • Stephan Philipp
  • Justyna Sosna
  • Charles G Glabe

National Institutes of Health (R56 AG061847)

  • Paul Seidler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wesley I Sundquist, University of Utah School of Medicine, United States

Version history

  1. Received: March 16, 2019
  2. Accepted: October 4, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 12, 2019 (version 2)

Copyright

© 2019, Griner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,485
    Page views
  • 954
    Downloads
  • 70
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah L Griner
  2. Paul Seidler
  3. Jeannette Bowler
  4. Kevin A Murray
  5. Tianxiao Peter Yang
  6. Shruti Sahay
  7. Michael R Sawaya
  8. Duilio Cascio
  9. Jose A Rodriguez
  10. Stephan Philipp
  11. Justyna Sosna
  12. Charles G Glabe
  13. Tamir Gonen
  14. David S Eisenberg
(2019)
Structure based inhibitors of Amyloid Beta core suggest a common interface with Tau
eLife 8:e46924.
https://doi.org/10.7554/eLife.46924

Share this article

https://doi.org/10.7554/eLife.46924

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.