Structure based inhibitors of Amyloid Beta core suggest a common interface with Tau

  1. Sarah L Griner  Is a corresponding author
  2. Paul Seidler
  3. Jeannette Bowler
  4. Kevin A Murray
  5. Tianxiao Peter Yang
  6. Shruti Sahay
  7. Michael R Sawaya
  8. Duilio Cascio
  9. Jose A Rodriguez
  10. Stephan Philipp
  11. Justyna Sosna
  12. Charles G Glabe
  13. Tamir Gonen
  14. David S Eisenberg  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Los Angeles, United States
  2. University of California, Irvine, United States
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Alzheimer's disease (AD) pathology is characterized by plaques of amyloid beta (Aβ) and neurofibrillary tangles of tau. Aβ aggregation is thought to occur at early stages of the disease, and ultimately gives way to the formation of tau tangles which track with cognitive decline in humans. Here, we report the crystal structure of an Aβ core segment determined by MicroED and in it, note characteristics of both fibrillar and oligomeric structure. Using this structure, we designed peptide-based inhibitors that reduce Aβ aggregation and toxicity of already-aggregated species. Unexpectedly, we also found that these inhibitors reduce the efficiency of Aβ-mediated tau aggregation, and moreover reduce aggregation and self-seeding of tau fibrils. The ability of these inhibitors to interfere with both Aβ and tau seeds suggests these fibrils share a common epitope, and supports the hypothesis that cross-seeding is one mechanism by which amyloid is linked to tau aggregation and could promote cognitive decline.

Data availability

Diffraction data have been deposited in PDB under the accession code 6O4JSource Data for Toxicity and Seeding data are provided (Figures 2-7)

The following data sets were generated

Article and author information

Author details

  1. Sarah L Griner

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    sgriner@ucla.edu
    Competing interests
    No competing interests declared.
  2. Paul Seidler

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Jeannette Bowler

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Kevin A Murray

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Tianxiao Peter Yang

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4479-5154
  6. Shruti Sahay

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Michael R Sawaya

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Duilio Cascio

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Jose A Rodriguez

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Stephan Philipp

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  11. Justyna Sosna

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  12. Charles G Glabe

    Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  13. Tamir Gonen

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9254-4069
  14. David S Eisenberg

    Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    david@mbi.ucla.edu
    Competing interests
    David S Eisenberg, is a SAB member and equity holder in ADRx, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2432-5419

Funding

National Institutes of Health (R01 AG029430)

  • Sarah L Griner
  • Paul Seidler
  • Jeannette Bowler
  • Kevin A Murray
  • Tianxiao Peter Yang
  • Shruti Sahay
  • Michael R Sawaya
  • Duilio Cascio
  • Jose A Rodriguez
  • David S Eisenberg

Howard Hughes Medical Institute

  • Sarah L Griner
  • Paul Seidler
  • Jeannette Bowler
  • Kevin A Murray
  • Tianxiao Peter Yang
  • Shruti Sahay
  • Michael R Sawaya
  • Duilio Cascio
  • Jose A Rodriguez
  • Tamir Gonen
  • David S Eisenberg

Cure Alzheimer's Fund

  • Stephan Philipp
  • Justyna Sosna
  • Charles G Glabe

National Institutes of Health (R56 AG061847)

  • Paul Seidler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wesley I Sundquist, University of Utah School of Medicine, United States

Version history

  1. Received: March 16, 2019
  2. Accepted: October 4, 2019
  3. Accepted Manuscript published: October 15, 2019 (version 1)
  4. Version of Record published: November 12, 2019 (version 2)

Copyright

© 2019, Griner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,217
    Page views
  • 911
    Downloads
  • 65
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah L Griner
  2. Paul Seidler
  3. Jeannette Bowler
  4. Kevin A Murray
  5. Tianxiao Peter Yang
  6. Shruti Sahay
  7. Michael R Sawaya
  8. Duilio Cascio
  9. Jose A Rodriguez
  10. Stephan Philipp
  11. Justyna Sosna
  12. Charles G Glabe
  13. Tamir Gonen
  14. David S Eisenberg
(2019)
Structure based inhibitors of Amyloid Beta core suggest a common interface with Tau
eLife 8:e46924.
https://doi.org/10.7554/eLife.46924

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Sevim Kahraman, Kimitaka Shibue ... Rohit N Kulkarni
    Tools and Resources

    Pancreatic a-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human a-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality a-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live a-cells from dissociated human islet cells with ~ 95% purity. The a-cells, confirmed by sorting and immunostaining for glucagon, were cultured up to 10 days to form a-pseudoislets. The a-pseudoislets could be maintained in culture without significant loss of viability, and responded to glucose challenge by secreting appropriate levels of glucagon. RNA-sequencing analyses (RNA-seq) revealed that expression levels of key a-cell identity genes were sustained in culture while some of the genes such as DLK1, GSN, SMIM24 were altered in a-pseudoislets in a time-dependent manner. In conclusion, we report a method to sort human primary a-cells with high purity that can be used for downstream analyses such as functional and transcriptional studies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Valentin Chabert, Geun-Don Kim ... Andreas Mayer
    Research Article

    Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.