Modular organization of cerebellar climbing fiber inputs during goal-directed behavior

  1. Shinichiro Tsutsumi  Is a corresponding author
  2. Naoki Hidaka
  3. Yoshikazu Isomura
  4. Masanori Matsuzaki
  5. Kenji Sakimura
  6. Masanobu Kano  Is a corresponding author
  7. Kazuo Kitamura  Is a corresponding author
  1. The University of Tokyo, Japan
  2. Tamagawa University, Japan
  3. Niigata University, Japan
  4. University of Yamanashi, Japan

Abstract

The cerebellum has a parasagittal modular architecture characterized by precisely organized climbing fiber (CF) projections congruent with alternating aldolase C/zebrin II expression. However, behavioral relevance of CF inputs to individual modules remains poorly understood. Here, we used two-photon calcium imaging in the cerebellar hemisphere Crus II in mice performing an auditory go/no-go task to investigate the functional differences in CF inputs to modules. CF signals in medial modules show anticipatory decreases, early increases, secondary increases, and reward-related increases or decreases, which represent quick motor initiation, go cues, fast motor behavior, and positive reward outcomes. CF signals in lateral modules show early increases and reward-related decreases, which represent no-go and/or go cues and positive reward outcomes. The boundaries of CF functions broadly correspond to those of aldolase C patterning. These results indicate that spatially segregated CF inputs in different modules play distinct roles for execution of goal-directed behavior.

Data availability

Data analysed for all the figures are included in the manuscript and source data files. The Aldoc-tdTomato mouse line will be available at RIKEN Bio Resource Center.

Article and author information

Author details

  1. Shinichiro Tsutsumi

    Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    For correspondence
    stsutsumi@m.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  2. Naoki Hidaka

    Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoshikazu Isomura

    Brain Science Institute, Tamagawa University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masanori Matsuzaki

    Department of Cellular and Molecular Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3872-4322
  5. Kenji Sakimura

    Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Masanobu Kano

    Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
    For correspondence
    mkano-tky@m.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  7. Kazuo Kitamura

    Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
    For correspondence
    kitamurak@yamanashi.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8956-4122

Funding

Japan Society for the Promotion of Science (23115504)

  • Kazuo Kitamura

Japan Society for the Promotion of Science (25115705)

  • Kazuo Kitamura

Japan Society for the Promotion of Science (25290003)

  • Kazuo Kitamura

Japan Society for the Promotion of Science (15H01426)

  • Kazuo Kitamura

Japan Society for the Promotion of Science (17H03543)

  • Kazuo Kitamura

Japan Society for the Promotion of Science (17H06313)

  • Kazuo Kitamura

Japan Society for the Promotion of Science (21220006)

  • Masanobu Kano

Japan Society for the Promotion of Science (25000015)

  • Masanobu Kano

Japan Society for the Promotion of Science (18H04012)

  • Masanobu Kano

Ministry of Education, Culture, Sports, Science, and Technology (Comprehensive Brain Science Network)

  • Kenji Sakimura
  • Masanobu Kano
  • Kazuo Kitamura

Ministry of Education, Culture, Sports, Science, and Technology (Brain Information Dynamics)

  • Kazuo Kitamura

Ministry of Education, Culture, Sports, Science, and Technology (The Strategic Research Programme for Brain Sciences)

  • Masanobu Kano

Japan Agency for Medical Research and Development (Brain/MINDS)

  • Masanobu Kano
  • Kazuo Kitamura

Takeda Science Foundation

  • Kazuo Kitamura

Uehara Memorial Foundation

  • Kazuo Kitamura

Japan Society for the Promotion of Science (25560432)

  • Kazuo Kitamura

Japan Society for the Promotion of Science (25113705)

  • Kazuo Kitamura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan R Carey, Champalimaud Foundation, Portugal

Ethics

Animal experimentation: All experiments were approved by the Animal Experiment Committees of the University of Tokyo (#P08-015) and University of Yamanashi (#A27-1).

Version history

  1. Received: March 20, 2019
  2. Accepted: October 7, 2019
  3. Accepted Manuscript published: October 9, 2019 (version 1)
  4. Version of Record published: November 11, 2019 (version 2)

Copyright

© 2019, Tsutsumi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,149
    Page views
  • 491
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shinichiro Tsutsumi
  2. Naoki Hidaka
  3. Yoshikazu Isomura
  4. Masanori Matsuzaki
  5. Kenji Sakimura
  6. Masanobu Kano
  7. Kazuo Kitamura
(2019)
Modular organization of cerebellar climbing fiber inputs during goal-directed behavior
eLife 8:e47021.
https://doi.org/10.7554/eLife.47021

Share this article

https://doi.org/10.7554/eLife.47021

Further reading

    1. Neuroscience
    Harry Clark, Matthew F Nolan
    Research Article

    Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.