Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria

  1. Nikola Ojkic
  2. Diana Serbanescu
  3. Shiladitya Banerjee  Is a corresponding author
  1. University College London, United Kingdom

Abstract

Rod-shaped bacterial cells can readily adapt their lengths and widths in response to environmental changes. While many recent studies have focused on the mechanisms underlying bacterial cell size control, it remains largely unknown how the coupling between cell length and width results in robust control of rod-like bacterial shapes. In this study we uncover a conserved surface-to-volume scaling relation in Escherichia coli and other rod-shaped bacteria, resulting from the preservation of cell aspect ratio. To explain the mechanistic origin of aspect-ratio control, we propose a quantitative model for the coupling between bacterial cell elongation and the accumulation of an essential division protein, FtsZ. This model reveals a mechanism for why bacterial aspect ratio is independent of cell size and growth conditions, and predicts cell morphological changes in response to nutrient perturbations, antibiotics, MreB or FtsZ depletion, in quantitative agreement with experimental data.

Data availability

All data generated or analysed during this study are referenced in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Nikola Ojkic

    Department of Physics and Astronomy, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Diana Serbanescu

    Department of Physics and Astronomy, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiladitya Banerjee

    Department of Physics and Astronomy, University College London, London, United Kingdom
    For correspondence
    shiladitya.banerjee@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8000-2556

Funding

Royal Society (URF/R1/180187)

  • Shiladitya Banerjee

Royal Society (RGF/EA/181044)

  • Shiladitya Banerjee

Engineering and Physical Sciences Research Council (EP/R029822/1)

  • Shiladitya Banerjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: March 20, 2019
  2. Accepted: August 28, 2019
  3. Accepted Manuscript published: August 28, 2019 (version 1)
  4. Version of Record published: September 12, 2019 (version 2)

Copyright

© 2019, Ojkic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,820
    Page views
  • 568
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikola Ojkic
  2. Diana Serbanescu
  3. Shiladitya Banerjee
(2019)
Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria
eLife 8:e47033.
https://doi.org/10.7554/eLife.47033

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Kishore Hari, Varun Ullanat ... Mohit Kumar Jolly
    Research Advance Updated

    Elucidating the design principles of regulatory networks driving cellular decision-making has fundamental implications in mapping and eventually controlling cell-fate decisions. Despite being complex, these regulatory networks often only give rise to a few phenotypes. Previously, we identified two ‘teams’ of nodes in a small cell lung cancer regulatory network that constrained the phenotypic repertoire and aligned strongly with the dominant phenotypes obtained from network simulations (Chauhan et al., 2021). However, it remained elusive whether these ‘teams’ exist in other networks, and how do they shape the phenotypic landscape. Here, we demonstrate that five different networks of varying sizes governing epithelial–mesenchymal plasticity comprised of two ‘teams’ of players – one comprised of canonical drivers of epithelial phenotype and the other containing the mesenchymal inducers. These ‘teams’ are specific to the topology of these regulatory networks and orchestrate a bimodal phenotypic landscape with the epithelial and mesenchymal phenotypes being more frequent and dynamically robust to perturbations, relative to the intermediary/hybrid epithelial/mesenchymal ones. Our analysis reveals that network topology alone can contain information about corresponding phenotypic distributions, thus obviating the need to simulate them. We propose ‘teams’ of nodes as a network design principle that can drive cell-fate canalization in diverse decision-making processes.

    1. Physics of Living Systems
    Samuel A Bentley, Hannah Laeverenz-Schlogelhofer ... Kirsty Y Wan
    Research Article

    The movement trajectories of organisms serve as dynamic read-outs of their behaviour and physiology. For microorganisms this can be difficult to resolve due to their small size and fast movement. Here, we devise a novel droplet microfluidics assay to encapsulate single micron-sized algae inside closed arenas, enabling ultralong high-speed tracking of the same cell. Comparing two model species - Chlamydomonas reinhardtii (freshwater, 2 cilia), and Pyramimonas octopus (marine, 8 cilia), we detail their highly-stereotyped yet contrasting swimming behaviours and environmental interactions. By measuring the rates and probabilities with which cells transition between a trio of motility states (smooth-forward swimming, quiescence, tumbling or excitable backward swimming), we reconstruct the control network that underlies this gait switching dynamics. A simplified model of cell-roaming in circular confinement reproduces the observed long-term behaviours and spatial fluxes, including novel boundary circulation behaviour. Finally, we establish an assay in which pairs of droplets are fused on demand, one containing a trapped cell with another containing a chemical that perturbs cellular excitability, to reveal how aneural microorganisms adapt their locomotor patterns in real-time.