1. Physics of Living Systems
Download icon

Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria

  1. Nikola Ojkic
  2. Diana Serbanescu
  3. Shiladitya Banerjee  Is a corresponding author
  1. University College London, United Kingdom
Short Report
  • Cited 21
  • Views 5,827
  • Annotations
Cite this article as: eLife 2019;8:e47033 doi: 10.7554/eLife.47033

Abstract

Rod-shaped bacterial cells can readily adapt their lengths and widths in response to environmental changes. While many recent studies have focused on the mechanisms underlying bacterial cell size control, it remains largely unknown how the coupling between cell length and width results in robust control of rod-like bacterial shapes. In this study we uncover a conserved surface-to-volume scaling relation in Escherichia coli and other rod-shaped bacteria, resulting from the preservation of cell aspect ratio. To explain the mechanistic origin of aspect-ratio control, we propose a quantitative model for the coupling between bacterial cell elongation and the accumulation of an essential division protein, FtsZ. This model reveals a mechanism for why bacterial aspect ratio is independent of cell size and growth conditions, and predicts cell morphological changes in response to nutrient perturbations, antibiotics, MreB or FtsZ depletion, in quantitative agreement with experimental data.

Data availability

All data generated or analysed during this study are referenced in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Nikola Ojkic

    Department of Physics and Astronomy, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Diana Serbanescu

    Department of Physics and Astronomy, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Shiladitya Banerjee

    Department of Physics and Astronomy, University College London, London, United Kingdom
    For correspondence
    shiladitya.banerjee@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8000-2556

Funding

Royal Society (URF/R1/180187)

  • Shiladitya Banerjee

Royal Society (RGF/EA/181044)

  • Shiladitya Banerjee

Engineering and Physical Sciences Research Council (EP/R029822/1)

  • Shiladitya Banerjee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: March 20, 2019
  2. Accepted: August 28, 2019
  3. Accepted Manuscript published: August 28, 2019 (version 1)
  4. Version of Record published: September 12, 2019 (version 2)

Copyright

© 2019, Ojkic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,827
    Page views
  • 445
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Xingbo Yang et al.
    Research Article

    Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the FLIM measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.

    1. Physics of Living Systems
    Debasmita Mondal et al.
    Research Article

    Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga Chlamydomonas between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.