A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion
Abstract
CARM1 is a cancer-relevant protein arginine methyltransferase that regulates many aspects of transcription. Its pharmacological inhibition is a promising anti-cancer strategy. Here SKI-73 (6a in this work) is presented as a CARM1 chemical probe with pro-drug properties. SKI-73 (6a) can rapidly penetrate cell membranes and then be processed into active inhibitors, which are retained intracellularly with 10-fold enrichment for several days. These compounds were characterized for their potency, selectivity, modes of action, and on-target engagement. SKI-73 (6a) recapitulates the effect of CARM1 knockout against breast cancer cell invasion. Single-cell RNA-seq analysis revealed that the SKI-73(6a)-associated reduction of invasiveness acts via altering epigenetic plasticity and suppressing the invasion-prone subpopulation. Interestingly, SKI-73 (6a) and CARM1 knockout alter the epigenetic plasticity with remarkable difference, arguing distinct modes of action between the small-molecule and genetic perturbation. We therefore discovered a CARM1-addiction mechanism of cancer metastasis and developed a chemical probe to target this process.
Data availability
The crystallographic coordinates and structural factors are deposited into the Protein Data Bank with the accession numbers of 4IKP for the CARM1-1 complex and 6D2L for CARM1-5a complex.
-
Crystal structure of human CARM1 with (S)-SKI-72Protein Data Bank, 6D2L.
Article and author information
Author details
Funding
National Institutes of Health (R01GM096056)
- Minkui Luo
Susan G Komen Foundation (PDF17481306)
- Eui-jun Kim
Special Funding of Beijing Municipal Administration of Hospitals Clinical Medicine Development YangFan Project (ZYLX201713)
- Zhenyu Zhang
The Structural Genomics Consortium
- Peter J Brown
National Institutes of Health (R35GM131858)
- Minkui Luo
National Institutes of Health (R01GM120570)
- Minkui Luo
National Cancer Institute (5P30 CA008748)
- Minkui Luo
National Cancer Institute (R01CA236356)
- Wei Xu
National Cancer Institute (R01CA213293)
- Wei Xu
Starr Cancer Consortium (I8-A8-058)
- Minkui Luo
MSKCC Functional Genomics Initiative
- Minkui Luo
Mr William H Goodwin and Mrs Alice Goodwin Commonwealth Foundation for Cancer Research, and the Experimental Therapeutics Center of Memorial Sloan Kettering Cancer Center
- Minkui Luo
MSKCC Metastasis and Tumor Ecosystems Center
- Minkui Luo
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Wilfred A van der Donk, University of Illinois at Urbana-Champaign, United States
Publication history
- Received: March 24, 2019
- Accepted: October 27, 2019
- Accepted Manuscript published: October 28, 2019 (version 1)
- Version of Record published: December 17, 2019 (version 2)
- Version of Record updated: October 15, 2020 (version 3)
Copyright
© 2019, Cai et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,579
- Page views
-
- 502
- Downloads
-
- 18
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Cancer Biology
Cancer secretome is a reservoir for aberrant glycosylation. How therapies alter this post- translational cancer hallmark and the consequences thereof remain elusive. Here we show that an elevated secretome fucosylation is a pan-cancer signature of both response and resistance to multiple targeted therapies. Large-scale pharmacogenomics revealed that fucosylation genes display widespread association with resistance to these therapies. In cancer cell cultures, xenograft mouse models, and patients, targeted kinase inhibitors distinctively induced core fucosylation of secreted proteins less than 60 kDa. Label-free proteomics of N-glycoproteomes identified fucosylation of the antioxidant PON1 as a critical component of the therapy-induced secretome (TIS). N-glycosylation of TIS and target core fucosylation of PON1 are mediated by the fucose salvage-FUT8-SLC35C1 axis with PON3 directly modulating GDP-Fuc transfer on PON1 scaffolds. Core fucosylation in the Golgi impacts PON1 stability and folding prior to secretion, promoting a more degradation-resistant PON1. Global and PON1-specific secretome de-N-glycosylation both limited the expansion of resistant clones in a tumor regression model. We defined the resistance-associated transcription factors (TFs) and genes modulated by the N-glycosylated TIS via a focused and transcriptome-wide analyses. These genes characterize the oxidative stress, inflammatory niche, and unfolded protein response as important factors for this modulation. Our findings demonstrate that core fucosylation is a common modification indirectly induced by targeted therapies that paradoxically promotes resistance.