Molecular basis for dyneinopathies reveals insight into dynein regulation and dysfunction
Abstract
Cytoplasmic dynein plays critical roles within the developing and mature nervous systems, including effecting nuclear migration, and retrograde transport of various cargos. Unsurprisingly, mutations in dynein are causative of various developmental neuropathies and motor neuron diseases. These 'dyneinopathies' define a broad spectrum of diseases with no known correlation between mutation identity and disease state. To circumvent complications associated with dynein studies in human cells, we employed budding yeast as a screening platform to characterize the motility properties of seventeen disease-correlated dynein mutants. Using this system, we determined the molecular basis for several classes of etiologically related diseases. Moreover, by engineering compensatory mutations, we alleviated the mutant phenotypes in two of these cases, one of which we confirmed with recombinant human dynein. In addition to revealing molecular insight into dynein regulation, our data provide additional evidence that the type of disease may in fact be dictated by the degree of dynein dysfunction.
Data availability
All of the data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.
Article and author information
Author details
Funding
Muscular Dystrophy Association (376387)
- Matthew G Marzo
- Jacqueline M Griswold
- Kristina M Ruff
- Rachel E Buchmeier
- Steven M Markus
National Institute of General Medical Sciences (GM 118492)
- Matthew G Marzo
- Steven M Markus
National Institute of General Medical Sciences (GM 112893)
- Colby P Fees
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Marzo et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,047
- views
-
- 388
- downloads
-
- 46
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 46
- citations for umbrella DOI https://doi.org/10.7554/eLife.47246