Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes

  1. Takeshi Katsuda
  2. Juntaro Matsuzaki
  3. Tomoko Yamaguchi
  4. Yasuhiro Yamada
  5. Marta Prieto-Vila
  6. Kazunori Hosaka
  7. Atsuko Takeuchi
  8. Yoshimasa Saito
  9. Takahiro Ochiya  Is a corresponding author
  1. National Cancer Center Research Institute, Japan
  2. Nihon Pharmaceutical University, Japan
  3. Kobe Pharmaceutical University, Japan
  4. Keio University, Japan

Abstract

Hepatocytes are regarded as the only effective cell source for cell transplantation to treat liver diseases; however, their availability is limited due to a donor shortage. Thus, a novel cell source must be developed. We recently reported that mature rodent hepatocytes can be reprogrammed into progenitor-like cells with a repopulative capacity using small molecule inhibitors. Here, we demonstrate that hepatic progenitor cells can be obtained from human infant hepatocytes using the same strategy. These cells, named human chemically induced liver progenitors (hCLiPs), had a significant repopulative capacity in injured mouse livers following transplantation. hCLiPs redifferentiated into mature hepatocytes in vitro upon treatment with hepatic maturation-inducing factors. These redifferentiated cells exhibited cytochrome P450 (CYP) enzymatic activities in response to CYP-inducing molecules and these activities were comparable with those in primary human hepatocytes. These findings will facilitate liver cell transplantation therapy and drug discovery studies.

Data availability

Microarray transcriptome data are available with accession numbers GSE133776 (Reprogramming of primary human hepatocytes (PHHs) into hCLiPs); GSE133777 (Hepatic induction of hCLiPs); GSE133778(Characterization of long term-cultured of hCLiPs); GSE133779 (Transcriptomic analysis of PHHs isolated from hCLiP-transplanted mouse chimeric liver). GSE133776-GSE133779 are included in Superseries GSE133797. Comparative analysis of IPHH and APHH transcriptome is available with an accession number GSE134672.

The following data sets were generated

Article and author information

Author details

  1. Takeshi Katsuda

    Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
    Competing interests
    No competing interests declared.
  2. Juntaro Matsuzaki

    Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3204-5049
  3. Tomoko Yamaguchi

    Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
    Competing interests
    No competing interests declared.
  4. Yasuhiro Yamada

    Department of Clinical Pharmaceutics, Nihon Pharmaceutical University, Saitama, Japan
    Competing interests
    No competing interests declared.
  5. Marta Prieto-Vila

    Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
    Competing interests
    No competing interests declared.
  6. Kazunori Hosaka

    Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
    Competing interests
    No competing interests declared.
  7. Atsuko Takeuchi

    Division of Analytical Laboratory, Kobe Pharmaceutical University, Kobe, Japan
    Competing interests
    No competing interests declared.
  8. Yoshimasa Saito

    Division of Pharmacotherapeutics, Keio University, Tokyo, Japan
    Competing interests
    No competing interests declared.
  9. Takahiro Ochiya

    Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
    For correspondence
    tochiya@ncc.go.jp
    Competing interests
    Takahiro Ochiya, Received funding from Interstem Co. Ltd..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0776-9918

Funding

Japan Agency for Medical Research and Development (16fk0310512h0005)

  • Takahiro Ochiya

Japan Agency for Medical Research and Development (17fk0310101h0001)

  • Takahiro Ochiya

Japan Society for the Promotion of Science London (16K16643)

  • Takeshi Katsuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments in this study were performed in compliance with the guidelines of the Institute for Laboratory Animal Research, National Cancer Center Research Institute. The protocol was approved by the Committee on the Ethics of Animal Experiments of National Cancer Center Research Institute (Permit Number: T14-015-E). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2019, Katsuda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 909
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.47313

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.