Abstract

Planar supported lipid bilayers (PSLBs) presenting T cell receptor (TCR) ligands and ICAM-1 induce budding of extracellular microvesicles enriched in functional TCR, defined here as synaptic ectosomes (SE), from helper T cells. SE bind peptide-MHC directly exporting TCR into the synaptic cleft, but incorporation of other effectors is unknown. Here, we utilized bead supported lipid bilayers (BSLB) to capture SE from single immunological synapses (IS), determined SE composition by immunofluorescence flow cytometry and enriched SE for proteomic analysis by particle sorting. We demonstrate selective enrichment of CD40L and ICOS in SE in response to addition of CD40 and ICOSL, respectively, to SLB presenting TCR ligands and ICAM-1. SE are enriched in tetraspanins, BST-2, TCR signalling and ESCRT proteins. Super-resolution microscopy demonstrated that CD40L is present in microclusters within CD81 defined SE that are spatially segregated from TCR/ICOS/BST-2. CD40L+ SE retain the capacity to induce dendritic cell maturation and cytokine production.

Data availability

The Mass spec data set has been deposited in ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD007988.

The following data sets were generated

Article and author information

Author details

  1. David George Saliba

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Pablo F Cespedes-Donoso

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1641-4107
  3. Štefan Bálint

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4470-5881
  4. Ewoud B Compeer

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3050-7633
  5. Kseniya Korobchevskaya

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Salvatore Valvo

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  7. Viveka Mayya

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Audun Kvalvaag

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Yanchun Peng

    MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  10. Tao Dong

    MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3545-3758
  11. Maria-Laura Tognoli

    Department of Oncology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  12. Eric O'Neill

    Department of Oncology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  13. Sarah Bonham

    Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  14. Roman Fischer

    Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9715-5951
  15. Benedikt M Kessler

    Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  16. Michael L Dustin

    Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    michael.dustin@kennedy.ox.ac.uk
    Competing interests
    Michael L Dustin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4983-6389

Funding

European Commission (AdG 670930)

  • David George Saliba
  • Pablo F Cespedes-Donoso
  • Štefan Bálint
  • Ewoud B Compeer
  • Michael L Dustin

Wellcome (PRF 100262)

  • Michael L Dustin

Cancer Research UK (UK A19277)

  • Eric O'Neill

Chinese Academy of Sciences (2018-I2M-2-002)

  • Yanchun Peng
  • Tao Dong

National Institutes of Health (N/A)

  • Michael L Dustin

Kennedy Trust for Rheumatology Research (N/A)

  • Michael L Dustin

European Molecular Biology Organization (ALTF 1420-2015)

  • Pablo F Cespedes-Donoso

The Research Council of Norway in conjunction with Marie Sklodowska-Curie Actions (275466)

  • Audun Kvalvaag

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Leukapheresis products (non-clinical and de-identified) from donor blood were used as a source of human T cells and monocytes. The Non-Clinical Issue division of National Health Service approved the use of leukapheresis reduction (LRS) chambers products at the University of Oxford (REC 11/H0711/7). Clone 35 was isolated from a healthy volunteer where written informed consent was given. Ethical approval was obtained from the University of Oxford Tropical Ethics Committee (OXTREC).

Copyright

© 2019, Saliba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,698
    views
  • 659
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David George Saliba
  2. Pablo F Cespedes-Donoso
  3. Štefan Bálint
  4. Ewoud B Compeer
  5. Kseniya Korobchevskaya
  6. Salvatore Valvo
  7. Viveka Mayya
  8. Audun Kvalvaag
  9. Yanchun Peng
  10. Tao Dong
  11. Maria-Laura Tognoli
  12. Eric O'Neill
  13. Sarah Bonham
  14. Roman Fischer
  15. Benedikt M Kessler
  16. Michael L Dustin
(2019)
Composition and structure of synaptic ectosomes exporting antigen receptor linked to functional CD40 ligand from helper T-cells
eLife 8:e47528.
https://doi.org/10.7554/eLife.47528

Share this article

https://doi.org/10.7554/eLife.47528

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Hiroyuki Yamamoto, Tetsuro Matano
    Research Article

    HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus–host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus–host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.

    1. Immunology and Inflammation
    Yan Qian, Qiannv Liu ... Pengyan Xia
    Research Article

    The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammasome-mediated inflammatory cytokines are crucial for host defense against bacterial infections. We found that P. aeruginosa infection activates the non-canonical inflammasome in macrophages, yet it inhibits the downstream activation of the NLRP3 inflammasome. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administration of a specific peptide that inhibits caspase-11 cleavage of VgrG2b significantly improves mouse survival during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.