Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes

  1. Morayma M Temoche-Diaz
  2. Matthew J Shurtleff
  3. Ryan M Nottingham
  4. Jun Yao
  5. Raj P Fadadu
  6. Alan M Lambowitz
  7. Randy Schekman  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of California, San Francisco, United States
  3. University of Texas at Austin, United States
  4. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Extracellular vesicles (EVs) encompass a variety of vesicles secreted into the extracellular space. EVs have been implicated in promoting tumor metastasis, but the molecular composition of tumor-derived EV sub-types and the mechanisms by which molecules are sorted into EVs remain mostly unknown. We report the separation of two small EV sub-populations from a metastatic breast cancer cell line, with biochemical features consistent with different sub-cellular origins. These EV sub-types use different mechanisms of miRNA sorting (selective and non-selective), suggesting that sorting occurs via fundamentally distinct processes, possibly dependent on EV origin. Using biochemical and genetic tools, we identified the Lupus La protein as mediating sorting of selectively packaged miRNAs. We found that two motifs embedded in miR-122 are responsible for high-affinity binding to Lupus La and sorting into vesicles formed in a cell-free reaction. Thus, tumor cells can simultaneously deploy multiple EV species using distinct sorting mechanisms that may enable diverse functions in normal and cancer biology.

Data availability

RNA sequencing data have been deposited in SRA under accession code PRJNA532890.

The following data sets were generated

Article and author information

Author details

  1. Morayma M Temoche-Diaz

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1119-1749
  2. Matthew J Shurtleff

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9846-3051
  3. Ryan M Nottingham

    Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6937-5394
  4. Jun Yao

    Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
  5. Raj P Fadadu

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Alan M Lambowitz

    Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
    Competing interests
    Alan M Lambowitz, Thermostable group II intron reverse transcriptase (TGIRT) enzymes and methods for their use are the subject of patents and patent applications that have been licensed by the University of Texas and East Tennessee State University to InGex, LLC. A.M.L., some former and present members of the A.M.L. laboratory, and the University of Texas are minority equity holders in InGex, LLC and receive royalty payments from the sale of TGIRT enzymes and kits and from the sublicensing of intellectual property to other companies..
  7. Randy Schekman

    Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    schekman@berkeley.edu
    Competing interests
    Randy Schekman, Reviewing Editor and Founding Editor-in-Chief, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8615-6409

Funding

Howard Hughes Medical Institute

  • Randy Schekman

National Institutes of Health (R01 GM37949)

  • Alan M Lambowitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Temoche-Diaz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,007
    views
  • 1,070
    downloads
  • 183
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Morayma M Temoche-Diaz
  2. Matthew J Shurtleff
  3. Ryan M Nottingham
  4. Jun Yao
  5. Raj P Fadadu
  6. Alan M Lambowitz
  7. Randy Schekman
(2019)
Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes
eLife 8:e47544.
https://doi.org/10.7554/eLife.47544

Share this article

https://doi.org/10.7554/eLife.47544