Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity

Abstract

The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The lipidomics data is provided as a supplementary table.

Article and author information

Author details

  1. Mario Ruiz

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  2. Rakesh Bodhicharla

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Marcus Ståhlman

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4202-0339
  4. Emma Svensk

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  5. Kiran Busayavalasa

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  6. Henrik Palmgren

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    Henrik Palmgren, affiliated with AstraZeneca. The author has no competing interests to declare. The other authors declare that no competing interests exist..
  7. Hanna Ruhanen

    Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  8. Jan Boren

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  9. Marc Pilon

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    marc.pilon@cmb.gu.se
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3919-2882

Funding

Vetenskapsrådet (Dnr: 2016-03676)

  • Marc Pilon

Cancerfonden (Dnr 16 0693)

  • Marc Pilon

Carl Tryggers Stiftelse för Vetenskaplig Forskning (CTS 16:365)

  • Marc Pilon

Diabetesfonden (DIA2016-109)

  • Marc Pilon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,539
    views
  • 514
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mario Ruiz
  2. Rakesh Bodhicharla
  3. Marcus Ståhlman
  4. Emma Svensk
  5. Kiran Busayavalasa
  6. Henrik Palmgren
  7. Hanna Ruhanen
  8. Jan Boren
  9. Marc Pilon
(2019)
Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity
eLife 8:e47733.
https://doi.org/10.7554/eLife.47733

Share this article

https://doi.org/10.7554/eLife.47733

Further reading

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.