Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity

Abstract

The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The lipidomics data is provided as a supplementary table.

Article and author information

Author details

  1. Mario Ruiz

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  2. Rakesh Bodhicharla

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Marcus Ståhlman

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4202-0339
  4. Emma Svensk

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  5. Kiran Busayavalasa

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  6. Henrik Palmgren

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    Henrik Palmgren, affiliated with AstraZeneca. The author has no competing interests to declare. The other authors declare that no competing interests exist..
  7. Hanna Ruhanen

    Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
    Competing interests
    No competing interests declared.
  8. Jan Boren

    Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  9. Marc Pilon

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    marc.pilon@cmb.gu.se
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3919-2882

Funding

Vetenskapsrådet (Dnr: 2016-03676)

  • Marc Pilon

Cancerfonden (Dnr 16 0693)

  • Marc Pilon

Carl Tryggers Stiftelse för Vetenskaplig Forskning (CTS 16:365)

  • Marc Pilon

Diabetesfonden (DIA2016-109)

  • Marc Pilon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,438
    views
  • 508
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mario Ruiz
  2. Rakesh Bodhicharla
  3. Marcus Ståhlman
  4. Emma Svensk
  5. Kiran Busayavalasa
  6. Henrik Palmgren
  7. Hanna Ruhanen
  8. Jan Boren
  9. Marc Pilon
(2019)
Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity
eLife 8:e47733.
https://doi.org/10.7554/eLife.47733

Share this article

https://doi.org/10.7554/eLife.47733

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.