A microfluidic device for inferring metabolic landscapes in yeast monolayer colonies

  1. Zoran Marinkovic
  2. Clément Vulin
  3. Mislav Acman
  4. Xiaohu Song
  5. Jean-Marc Di Meglio
  6. Ariel B Lindner  Is a corresponding author
  7. Pascal Hersen  Is a corresponding author
  1. CNRS, Universite Paris Diderot, France
  2. Paris Descartes University, France

Abstract

Microbial colonies are fascinating structures in which growth and internal organization reflect complex morphogenetic processes. Here, we generated a microfluidics device with arrays of long monolayer yeast colonies to further global understanding of how intercellular metabolic interactions affect the internal structure of colonies within defined boundary conditions. We observed the emergence of stable glucose gradients using fluorescently labelled hexose transporters and quantified the spatial correlations with intra-colony growth rates and expression of other genes regulated by glucose availability. These landscapes depended on the external glucose concentration as well as secondary gradients, e.g., amino acid availability. This work demonstrates the regulatory genetic networks governing cellular physiological adaptation are the key to internal structuration of cellular assemblies. This approach could be used in the future to decipher the interplay between long-range metabolic interactions, cellular development and morphogenesis in more complex systems.

Data availability

All data presented in the figure article and supplementary information are available on a Zenodo repository with the following DOI 10.5281/zenodo.2557396

The following data sets were generated

Article and author information

Author details

  1. Zoran Marinkovic

    Laboratoire Matière et Systèmes Complexes, CNRS, Universite Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7720-2802
  2. Clément Vulin

    Laboratoire Matière et Systèmes Complexes, CNRS, Universite Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mislav Acman

    Laboratoire Matière et Systèmes Complexes, CNRS, Universite Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaohu Song

    Center for Research and Interdisciplinarity, Paris Descartes University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jean-Marc Di Meglio

    Laboratoire Matière et Systèmes Complexes, CNRS, Universite Paris Diderot, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0446-4550
  6. Ariel B Lindner

    Center for Research and Interdisciplinarity, Paris Descartes University, Paris, France
    For correspondence
    ariel.lindner@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
  7. Pascal Hersen

    Laboratoire Matière et Systèmes Complexes, CNRS, Universite Paris Diderot, Paris, France
    For correspondence
    pascal.hersen@univ-paris-diderot.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2379-4280

Funding

European Commission (724813)

  • Pascal Hersen

Agence Nationale de la Recherche (ICEBERG-ANR-10-BINF-06-01)

  • Pascal Hersen

Agence Nationale de la Recherche (ANR-16-CE12-0025-01)

  • Pascal Hersen

Agence Nationale de la Recherche (ANR-11-LABX-0071)

  • Pascal Hersen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Marinkovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,330
    views
  • 441
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zoran Marinkovic
  2. Clément Vulin
  3. Mislav Acman
  4. Xiaohu Song
  5. Jean-Marc Di Meglio
  6. Ariel B Lindner
  7. Pascal Hersen
(2019)
A microfluidic device for inferring metabolic landscapes in yeast monolayer colonies
eLife 8:e47951.
https://doi.org/10.7554/eLife.47951

Share this article

https://doi.org/10.7554/eLife.47951