Two mechanisms regulate directional cell growth in Arabidopsis lateral roots
Abstract
Morphogenesis in plants depends critically on directional (anisotropic) growth. This occurs principally perpendicular to the net orientation of cellulose microfibrils (CMFs), which is in turn controlled by cortical microtubules (CMTs). In young lateral roots of Arabidopsis thaliana, growth anisotropy also depends on RAB-A5c, a plant-specific small GTPase that specifies a membrane trafficking pathway to the geometric edges of cells. Here we investigate the functional relationship between structural anisotropy at faces and RAB-A5c activity at edges during lateral root development. We show that surprisingly, inhibition of RAB-A5c function is associated with increased CMT/CMF anisotropy. We present genetic, pharmacological, and modelling evidence that this increase in CMT/CMF anisotropy partially compensates for loss of an independent RAB-A5c-mediated mechanism that maintains anisotropic growth in meristematic cells. We show that RAB-A5c associates with CMTs at cell edges, indicating that CMTs act as an integration point for both mechanisms controlling cellular growth anisotropy in lateral roots.
Data availability
Source data files have been provided for Figure 1, Figure 4, Figure 5, Figure 3, Figure 1 - Figure Supplement 2, Figure 1 - Figure Supplement 3, and Figure 3 - Figure Supplement 1. The source code file has been provided for the computational model (Figure 2 and Fiugre 2 - Figure Supplements).
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council (BB/P01979X/1)
- Charlotte Kirchhelle
- Antoine Jérusalem
- Ian Moore
Leverhulme Trust (RPG-2014-276)
- Niloufer G Irani
- Ian Moore
Leverhulme Trust (ECF-2017-483)
- Charlotte Kirchhelle
John Fell Fund, University of Oxford
- Charlotte Kirchhelle
- Antoine Jérusalem
- Ian Moore
Seventh Framework Programme (ERC Grant Agreement No. 306587)
- Daniel Garcia-Gonzalez
- Antoine Jérusalem
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Kirchhelle et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,965
- views
-
- 846
- downloads
-
- 31
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.
-
- Cell Biology
- Genetics and Genomics
Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.