Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry

  1. Valeria Ramaglia  Is a corresponding author
  2. Salma Sheikh-Mohamed
  3. Karen Legg
  4. Calvin Park
  5. Olga L Rojas
  6. Stephanie Zandee
  7. Fred Fu
  8. Olga Ornatsky
  9. Eric C Swanson
  10. David Pitt
  11. Alexandre Prat
  12. Trevor D McKee
  13. Jennifer L Gommerman
  1. University of Toronto, Canada
  2. Yale School of Medicine, United States
  3. Université de Montreal, Canada
  4. University Health Network, Canada
  5. Fluidigm Inc, Canada
  6. Université de Montréal, Canada

Abstract

Multiple Sclerosis (MS) is characterized by demyelinated and inflammatory lesions in the brain and spinal cord that are highly variable in terms of cellular content. Here we used imaging mass cytometry (IMC) to enable the simultaneous imaging of 15+ proteins within staged MS lesions. To test the potential for IMC to discriminate between different types of lesions, we selected a case with severe rebound MS disease activity after natalizumab cessation. With post-acquisition analysis pipelines we were able to: (1) Discriminate demyelinating macrophages from the resident microglial pool; (2) Determine which types of lymphocytes reside closest to blood vessels; (3) Identify multiple subsets of T and B cells, and (4) Ascertain dynamics of T cell phenotypes vis-à-vis lesion type and location. We propose that IMC will enable a comprehensive analysis of single-cell phenotypes, their functional states and cell-cell interactions in relation to lesion morphometry and demyelinating activity in MS patients.

Data availability

All data generated and analysed during this study are included in the manuscript and supporting files. Source data file has been provided for Figure 7.

Article and author information

Author details

  1. Valeria Ramaglia

    Department of Immunology, University of Toronto, Toronto, Canada
    For correspondence
    v.ramaglia@utoronto.ca
    Competing interests
    Valeria Ramaglia, received a consulting honorarium from EMD Serono.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9401-5988
  2. Salma Sheikh-Mohamed

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  3. Karen Legg

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Calvin Park

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Olga L Rojas

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  6. Stephanie Zandee

    Department of Neuroscience, Université de Montreal, Montreal, Canada
    Competing interests
    No competing interests declared.
  7. Fred Fu

    STTARR Innovation center, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  8. Olga Ornatsky

    Fluidigm Inc, Markham, Canada
    Competing interests
    Olga Ornatsky, is an employee of Fluidigm Inc.
  9. Eric C Swanson

    Fluidigm Inc, Markham, Canada
    Competing interests
    Eric C Swanson, is an employee of Fluidigm Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8454-1207
  10. David Pitt

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6407-9542
  11. Alexandre Prat

    Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6188-0580
  12. Trevor D McKee

    STTARR Innovation center, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
  13. Jennifer L Gommerman

    Department of Immunology, University of Toronto, Toronto, Canada
    Competing interests
    Jennifer L Gommerman, is a consultant for Roche (Canada) and currently holds grants with Novartis, EMD Serono, and Roche.

Funding

National Multiple Sclerosis Society (RR-1602-07777)

  • Valeria Ramaglia

Multiple Sclerosis Society of Canada

  • Jennifer L Gommerman

Multiple Sclerosis Society of Canada

  • Alexandre Prat

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This work included the use of post-mortem brain tissue. Written consent for post-mortem donation of the CNS to research from the MS donor was obtained (ethics committee approval number BH.07.001).Ethical approval for the use of post-mortem brain tissue from the control donor of the Netherlands Brain Bank was obtained (VU Medical Center ethic committee approval Reference number 2009/148)

Copyright

© 2019, Ramaglia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,764
    views
  • 852
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valeria Ramaglia
  2. Salma Sheikh-Mohamed
  3. Karen Legg
  4. Calvin Park
  5. Olga L Rojas
  6. Stephanie Zandee
  7. Fred Fu
  8. Olga Ornatsky
  9. Eric C Swanson
  10. David Pitt
  11. Alexandre Prat
  12. Trevor D McKee
  13. Jennifer L Gommerman
(2019)
Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry
eLife 8:e48051.
https://doi.org/10.7554/eLife.48051

Share this article

https://doi.org/10.7554/eLife.48051

Further reading

    1. Immunology and Inflammation
    Miki Kume, Hanako Koguchi-Yoshioka ... Rei Watanabe
    Research Article

    Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown. Here, we revealed that while Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it was downregulated in the keratinocytes of both psoriatic lesions and non-lesions compared to controls. Imiquimod application induced more severe dermatitis in Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of Sema4A KO mice showed increased T cell infiltration and IL-17A expression along with thicker epidermis and distinct cytokeratin expression compared to WT mice, which are hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced dermatitis. The epidermis of psoriatic non-lesion and Sema4A KO mice demonstrated mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the skewed expression of cytokeratins in Sema4A KO mice. Conclusively, Sema4A-mediated signaling cascades can be triggers for psoriasis and targets in the treatment and prevention of psoriasis.

    1. Immunology and Inflammation
    2. Medicine
    Yong Jin, Jiayu Xing ... Qingsheng Yu
    Research Article

    Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson’s disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.