An elusive electron shuttle from a facultative anaerobe

  1. Emily Mevers
  2. Lin Su
  3. Gleb Pishchany
  4. Moshe Baruch
  5. Jose Cornejo
  6. Elissa Hobert
  7. Eric Dimise  Is a corresponding author
  8. Caroline M Ajo-Franklin
  9. Jon Clardy  Is a corresponding author
  1. Harvard Medical School, United States
  2. Lawrence Berkeley National Laboratory, University of California, Berkeley, United States

Abstract

Some anaerobic bacteria use insoluble minerals as terminal electron acceptors and discovering the ways in which electrons move through the membrane barrier to the exterior acceptor forms an active field of research with implications for both bacterial physiology and bioenergy. A previous study suggested that Shewanella oneidensis MR-1 utilizes a small, polar, redox active molecule that serves as an electron shuttle between the bacteria and insoluble acceptors, but the shuttle itself has never been identified. Through isolation and synthesis, we identify it as ACNQ (2-amino-3-carboxy-1,4-naphthoquinone), a soluble analog of menaquinone. ACNQ is derived from DHNA (1,4-dihydroxy-2-naphthoic acid) in a non-enzymatic process that frustrated genetic approaches to identify the shuttle. Both ACNQ and DHNA restore reduction of AQDS under anaerobic growth in menaquinone-deficient mutants. Bioelectrochemistry analyses reveal that ACNQ (-0.32 VAg/AgCl) contributes to the extracellular electron transfer (EET) as an electron shuttle, without altering menaquinone generation or EET related cytochrome c expression.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Emily Mevers

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7986-5610
  2. Lin Su

    Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8784-3120
  3. Gleb Pishchany

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Moshe Baruch

    Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Jose Cornejo

    Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Elissa Hobert

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  7. Eric Dimise

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    ejdimise@gmail.com
    Competing interests
    No competing interests declared.
  8. Caroline M Ajo-Franklin

    Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Jon Clardy

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    jon_clardy@hms.harvard.edu
    Competing interests
    Jon Clardy, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0213-8356

Funding

National Institute of General Medical Sciences (GM086258)

  • Jon Clardy

National Center for Complementary and Integrative Health (AT980074)

  • Jon Clardy

U.S. Department of Energy (DE-AC02-05CH11231)

  • Caroline M Ajo-Franklin

National Institute of General Medical Sciences (5F32GM103010)

  • Elissa Hobert

China Scholarship Council (201606090098)

  • Lin Su

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dianne K Newman, California Institute of Technology, United States

Version history

  1. Received: April 29, 2019
  2. Accepted: June 24, 2019
  3. Accepted Manuscript published: June 24, 2019 (version 1)
  4. Version of Record published: August 8, 2019 (version 2)

Copyright

© 2019, Mevers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,595
    views
  • 664
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily Mevers
  2. Lin Su
  3. Gleb Pishchany
  4. Moshe Baruch
  5. Jose Cornejo
  6. Elissa Hobert
  7. Eric Dimise
  8. Caroline M Ajo-Franklin
  9. Jon Clardy
(2019)
An elusive electron shuttle from a facultative anaerobe
eLife 8:e48054.
https://doi.org/10.7554/eLife.48054

Share this article

https://doi.org/10.7554/eLife.48054

Further reading

    1. Biochemistry and Chemical Biology
    Daljit Sangar, Elizabeth Hill ... Jan Bieschke
    Research Article

    Prions replicate via the autocatalytic conversion of cellular prion protein (PrPC) into fibrillar assemblies of misfolded PrP. While this process has been extensively studied in vivo and in vitro, non-physiological reaction conditions of fibril formation in vitro have precluded the identification and mechanistic analysis of cellular proteins, which may alter PrP self-assembly and prion replication. Here, we have developed a fibril formation assay for recombinant murine and human PrP (23-231) under near-native conditions (NAA) to study the effect of cellular proteins, which may be risk factors or potential therapeutic targets in prion disease. Genetic screening suggests that variants that increase syntaxin-6 expression in the brain (gene: STX6) are risk factors for sporadic Creutzfeldt-Jakob disease (CJD). Analysis of the protein in NAA revealed, counterintuitively, that syntaxin-6 is a potent inhibitor of PrP fibril formation. It significantly delayed the lag phase of fibril formation at highly sub-stoichiometric molar ratios. However, when assessing toxicity of different aggregation time points to primary neurons, syntaxin-6 prolonged the presence of neurotoxic PrP species. Electron microscopy and super-resolution fluorescence microscopy revealed that, instead of highly ordered fibrils, in the presence of syntaxin-6 PrP formed less-ordered aggregates containing syntaxin-6. These data strongly suggest that the protein can directly alter the initial phase of PrP self-assembly and, uniquely, can act as an 'anti-chaperone', which promotes toxic aggregation intermediates by inhibiting fibril formation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.