B cells extract antigens at Arp2/3-generated actin foci interspersed with linear filaments

  1. Sophie Isabel Roper
  2. Laabiah Wasim
  3. Dessislava Malinova
  4. Michael Way
  5. Susan Cox
  6. Pavel Tolar  Is a corresponding author
  1. Francis Crick Institute, United Kingdom
  2. King's College London, United Kingdom

Abstract

Antibody production depends on B cell internalization and presentation of antigens to helper T cells. To acquire antigens displayed by antigen-presenting cells, B cells form immune synapses and extract antigens by the mechanical activity of the acto-myosin cytoskeleton. While cytoskeleton organization driving the initial formation of the B cell synapse has been studied, how the cytoskeleton supports antigen extraction remains poorly understood. Here we show that after initial cell spreading, F-actin in synapses of primary mouse B cells and human B cell lines forms a highly dynamic pattern composed of actin foci interspersed with linear filaments and myosin IIa. The foci are generated by Arp2/3-mediated branched-actin polymerization and stochastically associate with antigen clusters to mediate internalization. However, antigen extraction also requires the activity of formins, which reside near the foci and produce the interspersed filaments. Thus, a cooperation of branched-actin foci supported by linear filaments underlies B cell mechanics during antigen extraction.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Sophie Isabel Roper

    Immune Receptor Activation Laboratory, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Laabiah Wasim

    Immune Receptor Activation Laboratory, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Dessislava Malinova

    Immune Receptor Activation Laboratory, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Way

    Cellular Signalling and Cytoskeletal Function Laboratory, Francis Crick Institute, london, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7207-2722
  5. Susan Cox

    Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Pavel Tolar

    Immune Receptor Activation Laboratory, Francis Crick Institute, London, United Kingdom
    For correspondence
    pavel.tolar@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4693-7299

Funding

Francis Crick Institute (FC001185)

  • Laabiah Wasim
  • Dessislava Malinova
  • Pavel Tolar

H2020 European Research Council (648228)

  • Dessislava Malinova
  • Pavel Tolar

Francis Crick Institute (FC001209)

  • Michael Way

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were bred and treated in accordance with guidelines set by the UK Home Office (project license number 7008844) and the Francis Crick Institute Ethical Review Panel.

Copyright

© 2019, Roper et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,321
    views
  • 343
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie Isabel Roper
  2. Laabiah Wasim
  3. Dessislava Malinova
  4. Michael Way
  5. Susan Cox
  6. Pavel Tolar
(2019)
B cells extract antigens at Arp2/3-generated actin foci interspersed with linear filaments
eLife 8:e48093.
https://doi.org/10.7554/eLife.48093

Share this article

https://doi.org/10.7554/eLife.48093

Further reading

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.