Abstract

The microtubule binding protein EB1 specifically targets the growing ends of microtubules in cells, where EB1 facilitates the interactions of cellular proteins with microtubule plus-ends. Microtubule end targeting of EB1 has been attributed to high affinity binding of EB1 to GTP-tubulin that is present at growing microtubule ends. However, our 3D single-molecule diffusion simulations predicted a ~6000% increase in EB1 arrivals to open, tapered microtubule tip structures relative to closed lattice conformations. Using quantitative fluorescence, single-molecule, and electron microscopy experiments, we found that the binding of EB1 onto opened, structurally disrupted microtubules was dramatically increased relative to closed, intact microtubules, regardless of hydrolysis state. Correspondingly, in cells, the blunting of growing microtubule plus-ends by Vinblastine was correlated with reduced EB1 targeting. Together, our results suggest that microtubule structural recognition, based on a fundamental diffusion-limited binding model, facilitates the tip tracking of EB1 at growing microtubule ends.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Taylor A Reid

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Courtney Coombes

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Soumya Mukherjee

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rebecca R Goldblum

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kyle White

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sneha Parmar

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark McClellan

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marija Zanic

    Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5127-5819
  9. Naomi Courtemanche

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Melissa K Gardner

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    For correspondence
    klei0091@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5906-7363

Funding

National Institutes of Health (R01-GM103833)

  • Melissa K Gardner

National Institutes of Health (R35-GM126974)

  • Melissa K Gardner

National Science Foundation (1350741)

  • Melissa K Gardner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Reid et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,578
    views
  • 456
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Taylor A Reid
  2. Courtney Coombes
  3. Soumya Mukherjee
  4. Rebecca R Goldblum
  5. Kyle White
  6. Sneha Parmar
  7. Mark McClellan
  8. Marija Zanic
  9. Naomi Courtemanche
  10. Melissa K Gardner
(2019)
Structural state recognition facilitates tip tracking of EB1 at growing microtubule ends
eLife 8:e48117.
https://doi.org/10.7554/eLife.48117

Share this article

https://doi.org/10.7554/eLife.48117

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.