Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease

Abstract

Heterogeneity of lymphatic vessels during embryogenesis is critical for organ-specific lymphatic function. Little is known about lymphatics in the developing kidney, despite their established roles in pathology of the mature organ. We performed three-dimensional imaging to characterize lymphatic vessel formation in the mammalian embryonic kidney at single-cell resolution. In mouse, we visually and quantitatively assessed the development of kidney lymphatic vessels, remodeling from a ring-like anastomosis under the nascent renal pelvis, a site of VEGF-C expression, to form a patent vascular plexus. We identified a heterogenous population of lymphatic endothelial cell clusters in mouse and human embryonic kidneys. Exogenous VEGF-C expanded the lymphatic population in explanted mouse embryonic kidneys. Finally, we characterized complex kidney lymphatic abnormalities in a genetic mouse model of polycystic kidney disease. Our study provides novel insights into the development of kidney lymphatic vasculature; a system which likely has fundamental roles in renal development, physiology and disease.

Data availability

The FIJI script used for segmenting and binarizing PROX1+/LYVE1+ cells has been provided as Source code file 1. All raw numerical data and results of statistical tests are attached as Source Data files with the appropriate figure.

Article and author information

Author details

  1. Daniyal J Jafree

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8235-0394
  2. Dale Moulding

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Kolatsi-Joannou

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nuria Perretta Tejedor

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Karen L Price

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Natalie J Milmoe

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Claire L Walsh

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Rosa Maria Correra

    UCL Institute of Ophthalmology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Paul JD Winyard

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter C Harris

    Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Christiana Ruhrberg

    UCL Institute of Ophthalmology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Simon Walker-Samuel

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Paul R Riley

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9862-7332
  14. Adrian S Woolf

    School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5541-1358
  15. Peter Scambler

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. David A Long

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    For correspondence
    d.long@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6580-3435

Funding

UCL Great Ormond Street Institute of Child Health (Child Health Research Studentship)

  • Daniyal J Jafree
  • Peter Scambler
  • David A Long

British Heart Foundation (RG/15/14/31880)

  • Peter Scambler

Kidney Research UK (Paed_RP_10_2018)

  • Daniyal J Jafree
  • Adrian S Woolf
  • David A Long

Kidney Research UK (IN_012_2019)

  • Daniyal J Jafree
  • David A Long

University College London MB/PhD Programme (MB/PhD Studentship)

  • Daniyal J Jafree

Medical Research Council (MR/P018629/1)

  • David A Long

Medical Research Council (MR/L002744/1)

  • Adrian S Woolf

Medical Research Council (MR/K026739/1)

  • Adrian S Woolf

British Heart Foundation (FS/19/14/34170)

  • Rosa Maria Correra

Diabetes UK (15/0005283)

  • David A Long

NIHR Great Ormond Street Hospital Biomedical Research Centre Award (17DD08)

  • Dale Moulding

British Heart Foundation (CH/11/1/28798)

  • Paul R Riley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out according to a UK Home Office project license (PPL: PE52D8C09) and were compliant with the UK Animals (Scientific Procedures) Act 1986.

Human subjects: Human fetal kidneys were obtained from the Human Developmental Biology Resource (http://www.hdbr.org), which obtains written consent from donors to collect, store and distribute human fetal material between 4-20PCW.

Reviewing Editor

  1. Kari Alitalo, Wihuri Research Institute, Finland

Version history

  1. Received: May 3, 2019
  2. Accepted: November 30, 2019
  3. Accepted Manuscript published: December 6, 2019 (version 1)
  4. Version of Record published: January 8, 2020 (version 2)

Copyright

© 2019, Jafree et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,198
    Page views
  • 525
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniyal J Jafree
  2. Dale Moulding
  3. Maria Kolatsi-Joannou
  4. Nuria Perretta Tejedor
  5. Karen L Price
  6. Natalie J Milmoe
  7. Claire L Walsh
  8. Rosa Maria Correra
  9. Paul JD Winyard
  10. Peter C Harris
  11. Christiana Ruhrberg
  12. Simon Walker-Samuel
  13. Paul R Riley
  14. Adrian S Woolf
  15. Peter Scambler
  16. David A Long
(2019)
Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease
eLife 8:e48183.
https://doi.org/10.7554/eLife.48183

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Virginia L Pimmett, Mounia Lagha
    Insight

    Imaging experiments reveal the complex and dynamic nature of the transcriptional hubs associated with Notch signaling.

    1. Cell Biology
    2. Developmental Biology
    Simon Schneider, Andjela Kovacevic ... Hubert Schorle
    Research Article

    Cylicins are testis-specific proteins, which are exclusively expressed during spermiogenesis. In mice and humans, two Cylicins, the gonosomal X-linked Cylicin 1 (Cylc1/CYLC1) and the autosomal Cylicin 2 (Cylc2/CYLC2) genes, have been identified. Cylicins are cytoskeletal proteins with an overall positive charge due to lysine-rich repeats. While Cylicins have been localized in the acrosomal region of round spermatids, they resemble a major component of the calyx within the perinuclear theca at the posterior part of mature sperm nuclei. However, the role of Cylicins during spermiogenesis has not yet been investigated. Here, we applied CRISPR/Cas9-mediated gene editing in zygotes to establish Cylc1- and Cylc2-deficient mouse lines as a model to study the function of these proteins. Cylc1 deficiency resulted in male subfertility, whereas Cylc2-/-, Cylc1-/yCylc2+/-, and Cylc1-/yCylc2-/- males were infertile. Phenotypical characterization revealed that loss of Cylicins prevents proper calyx assembly during spermiogenesis. This results in decreased epididymal sperm counts, impaired shedding of excess cytoplasm, and severe structural malformations, ultimately resulting in impaired sperm motility. Furthermore, exome sequencing identified an infertile man with a hemizygous variant in CYLC1 and a heterozygous variant in CYLC2, displaying morphological abnormalities of the sperm including the absence of the acrosome. Thus, our study highlights the relevance and importance of Cylicins for spermiogenic remodeling and male fertility in human and mouse, and provides the basis for further studies on unraveling the complex molecular interactions between perinuclear theca proteins required during spermiogenesis.