Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease

Abstract

Heterogeneity of lymphatic vessels during embryogenesis is critical for organ-specific lymphatic function. Little is known about lymphatics in the developing kidney, despite their established roles in pathology of the mature organ. We performed three-dimensional imaging to characterize lymphatic vessel formation in the mammalian embryonic kidney at single-cell resolution. In mouse, we visually and quantitatively assessed the development of kidney lymphatic vessels, remodeling from a ring-like anastomosis under the nascent renal pelvis, a site of VEGF-C expression, to form a patent vascular plexus. We identified a heterogenous population of lymphatic endothelial cell clusters in mouse and human embryonic kidneys. Exogenous VEGF-C expanded the lymphatic population in explanted mouse embryonic kidneys. Finally, we characterized complex kidney lymphatic abnormalities in a genetic mouse model of polycystic kidney disease. Our study provides novel insights into the development of kidney lymphatic vasculature; a system which likely has fundamental roles in renal development, physiology and disease.

Data availability

The FIJI script used for segmenting and binarizing PROX1+/LYVE1+ cells has been provided as Source code file 1. All raw numerical data and results of statistical tests are attached as Source Data files with the appropriate figure.

Article and author information

Author details

  1. Daniyal J Jafree

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8235-0394
  2. Dale Moulding

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Maria Kolatsi-Joannou

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nuria Perretta Tejedor

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Karen L Price

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Natalie J Milmoe

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Claire L Walsh

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Rosa Maria Correra

    UCL Institute of Ophthalmology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Paul JD Winyard

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter C Harris

    Division of Nephrology and Hypertension, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Christiana Ruhrberg

    UCL Institute of Ophthalmology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Simon Walker-Samuel

    Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Paul R Riley

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9862-7332
  14. Adrian S Woolf

    School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5541-1358
  15. Peter Scambler

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. David A Long

    Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
    For correspondence
    d.long@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6580-3435

Funding

UCL Great Ormond Street Institute of Child Health (Child Health Research Studentship)

  • Daniyal J Jafree
  • Peter Scambler
  • David A Long

British Heart Foundation (RG/15/14/31880)

  • Peter Scambler

Kidney Research UK (Paed_RP_10_2018)

  • Daniyal J Jafree
  • Adrian S Woolf
  • David A Long

Kidney Research UK (IN_012_2019)

  • Daniyal J Jafree
  • David A Long

University College London MB/PhD Programme (MB/PhD Studentship)

  • Daniyal J Jafree

Medical Research Council (MR/P018629/1)

  • David A Long

Medical Research Council (MR/L002744/1)

  • Adrian S Woolf

Medical Research Council (MR/K026739/1)

  • Adrian S Woolf

British Heart Foundation (FS/19/14/34170)

  • Rosa Maria Correra

Diabetes UK (15/0005283)

  • David A Long

NIHR Great Ormond Street Hospital Biomedical Research Centre Award (17DD08)

  • Dale Moulding

British Heart Foundation (CH/11/1/28798)

  • Paul R Riley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kari Alitalo, Wihuri Research Institute, Finland

Ethics

Animal experimentation: All experiments were carried out according to a UK Home Office project license (PPL: PE52D8C09) and were compliant with the UK Animals (Scientific Procedures) Act 1986.

Human subjects: Human fetal kidneys were obtained from the Human Developmental Biology Resource (http://www.hdbr.org), which obtains written consent from donors to collect, store and distribute human fetal material between 4-20PCW.

Version history

  1. Received: May 3, 2019
  2. Accepted: November 30, 2019
  3. Accepted Manuscript published: December 6, 2019 (version 1)
  4. Version of Record published: January 8, 2020 (version 2)

Copyright

© 2019, Jafree et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,373
    views
  • 543
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniyal J Jafree
  2. Dale Moulding
  3. Maria Kolatsi-Joannou
  4. Nuria Perretta Tejedor
  5. Karen L Price
  6. Natalie J Milmoe
  7. Claire L Walsh
  8. Rosa Maria Correra
  9. Paul JD Winyard
  10. Peter C Harris
  11. Christiana Ruhrberg
  12. Simon Walker-Samuel
  13. Paul R Riley
  14. Adrian S Woolf
  15. Peter Scambler
  16. David A Long
(2019)
Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease
eLife 8:e48183.
https://doi.org/10.7554/eLife.48183

Share this article

https://doi.org/10.7554/eLife.48183

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.