Abstract

Innovations in metazoan development arise from evolutionary modification of gene regulatory networks (GRNs). We report widespread cryptic variation in the requirement for two key regulatory inputs, SKN-1/Nrf2 and MOM-2/Wnt, into the C. elegans endoderm GRN. While some natural isolates show a nearly absolute requirement for these two regulators, in others, most embryos differentiate endoderm in their absence. GWAS and analysis of recombinant inbred lines reveal multiple genetic regions underlying this broad phenotypic variation. We observe a reciprocal trend, in which genomic variants, or knockdown of endoderm regulatory genes, that result in a high SKN-1 requirement often show low MOM-2/Wnt requirement and vice-versa, suggesting that cryptic variation in the endoderm GRN may be tuned by opposing requirements for these two key regulatory inputs. These findings reveal that while the downstream components in the endoderm GRN are common across metazoan phylogeny, initiating regulatory inputs are remarkably plastic even within a single species.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Yamila N Torres Cleuren

    University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  2. Chee Kiang Ewe

    Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kyle C Chipman

    Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Emily R Mears

    University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  5. Cricket G Wood

    Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Coco Emma Alma Al-Alami

    University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  7. Melissa R Alcorn

    Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas L Turner

    Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Pradeep M Joshi

    Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4220-0559
  10. Russell G Snell

    University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  11. Joel H Rothman

    Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    joel.rothman@lifesci.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6844-1377

Funding

National Institutes of Health (1R01HD082347)

  • Joel H Rothman

National Institutes of Health (1R01HD081266)

  • Joel H Rothman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antonis Rokas, Vanderbilt University, United States

Version history

  1. Received: May 6, 2019
  2. Accepted: August 15, 2019
  3. Accepted Manuscript published: August 15, 2019 (version 1)
  4. Version of Record published: September 20, 2019 (version 2)

Copyright

© 2019, Torres Cleuren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,974
    views
  • 357
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yamila N Torres Cleuren
  2. Chee Kiang Ewe
  3. Kyle C Chipman
  4. Emily R Mears
  5. Cricket G Wood
  6. Coco Emma Alma Al-Alami
  7. Melissa R Alcorn
  8. Thomas L Turner
  9. Pradeep M Joshi
  10. Russell G Snell
  11. Joel H Rothman
(2019)
Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network
eLife 8:e48220.
https://doi.org/10.7554/eLife.48220

Share this article

https://doi.org/10.7554/eLife.48220

Further reading

    1. Developmental Biology
    Siyuan Cheng, Ivan Fan Xia ... Stefania Nicoli
    Research Article

    Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.