Electroporated recombinant proteins as tools for in vivo functional complementation, imaging, and chemical biology

  1. Amal Alex
  2. Valentina Piano
  3. Soumitra Polley
  4. Marchel Stuiver
  5. Stephanie Voss
  6. Giuseppe Ciossani
  7. Katharina Overlack
  8. Beate Voss
  9. Sabine Wohlgemuth
  10. Arsen Petrovic
  11. Yaowen Wu
  12. Philipp Selenko
  13. Andrea Musacchio
  14. Stefano Maffini  Is a corresponding author
  1. Max Planck Institute of Molecular Physiology, Germany
  2. Leibniz Institute of Molecular Pharmacology, Germany
  3. Max Planck Society, Germany

Abstract

Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and syntetic biology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Amal Alex

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Valentina Piano

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Soumitra Polley

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Marchel Stuiver

    In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3437-4468
  5. Stephanie Voss

    Chemical Genomics Centre, Max Planck Society, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Giuseppe Ciossani

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Katharina Overlack

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Beate Voss

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sabine Wohlgemuth

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Arsen Petrovic

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Yaowen Wu

    Chemical Genomics Centre, Max Planck Society, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2573-8736
  12. Philipp Selenko

    In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Andrea Musacchio

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2362-8784
  14. Stefano Maffini

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    stefano.maffini@mpi-dortmund.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6380-6560

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Beate Voss
  • Sabine Wohlgemuth
  • Stefano Maffini

European Research Council (669686)

  • Amal Alex
  • Valentina Piano
  • Soumitra Polley
  • Giuseppe Ciossani
  • Katharina Overlack
  • Beate Voss
  • Sabine Wohlgemuth
  • Arsen Petrovic
  • Andrea Musacchio
  • Stefano Maffini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Version history

  1. Received: May 8, 2019
  2. Accepted: July 12, 2019
  3. Accepted Manuscript published: July 16, 2019 (version 1)
  4. Version of Record published: July 24, 2019 (version 2)
  5. Version of Record updated: October 10, 2019 (version 3)

Copyright

© 2019, Alex et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,932
    Page views
  • 952
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amal Alex
  2. Valentina Piano
  3. Soumitra Polley
  4. Marchel Stuiver
  5. Stephanie Voss
  6. Giuseppe Ciossani
  7. Katharina Overlack
  8. Beate Voss
  9. Sabine Wohlgemuth
  10. Arsen Petrovic
  11. Yaowen Wu
  12. Philipp Selenko
  13. Andrea Musacchio
  14. Stefano Maffini
(2019)
Electroporated recombinant proteins as tools for in vivo functional complementation, imaging, and chemical biology
eLife 8:e48287.
https://doi.org/10.7554/eLife.48287

Share this article

https://doi.org/10.7554/eLife.48287

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.