Abstract

The antiviral activity of host factor apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) and its degradation mediated by human immunodeficiency virus type 1 (HIV-1) Vif protein are important topics. Although accumulating evidence indicates the importance of deubiquitination enzymes (DUBs) in innate immunity, it is unknown if they participate in A3G stability. Here, we found that USP49 directly interacts with A3G and efficiently removes ubiquitin, consequently increasing A3G protein expression and significantly enhancing its anti-HIV-1 activity. Unexpectedly, A3G degradation was also mediated by a Vif- and cullin-ring-independent pathway, which was effectively counteracted by USP49. Furthermore, clinical data suggested that USP49 is correlated with A3G protein expression and hypermutations in Vif-positive proviruses, and inversely with the intact provirus ratio in the HIV-1 latent reservoir. Our studies demonstrated a mechanism to effectively stabilize A3G expression, which could comprise a target to control HIV-1 infection and eradicate the latent reservoir.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ting Pan

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zheng Song

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Liyang Wu

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Guangyan Liu

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiancai Ma

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4934-4221
  6. Zhilin Peng

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Mo Zhou

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Liting Liang

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Bingfeng Liu

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Jun Liu

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Junsong Zhang

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Xuanhong Zhang

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Ryan Huang

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Jiacong Zhao

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Yonghong Li

    Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Xuemei Ling

    Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Yuewen Luo

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Xiaoping Tang

    Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Weiping Cai

    Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Kai Deng

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  21. Linghua Li

    Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou, China
    For correspondence
    llheliza@126.com
    Competing interests
    The authors declare that no competing interests exist.
  22. Hui Zhang

    Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
    For correspondence
    zhangh92@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3620-610X

Funding

National Special Research Program of China for Important Infectious Diseases (2018ZX10302103; 2017ZX10202102)

  • Hui Zhang

The Important Key Program of the Natural Science Foundation of China (81730060)

  • Hui Zhang

The International Collaboration Program of the Natural Science Foundation of China and the U.S. NIH (81561128007)

  • Hui Zhang

The Joint-Innovation Program in Healthcare for Special Scientific Research Projects of Guangzhou (201803040002)

  • Hui Zhang

The Science and Technology Planning Project of Guangzhou (201704020226)

  • Ting Pan

Pearl River S and T Nova Program of Guangzhou (201806010118)

  • Ting Pan

National Natural Science Foundation of China (8197080527)

  • Ting Pan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Guangxia Gao, Institute of Biophysics, Chinese Academy of Sciences, China

Ethics

Human subjects: All human samples were anonymously coded in accordance with the local ethical guidelines (as stipulated by the Declaration of Helsinki). The Ethics Review Board of Sun Yat-Sen University and the Ethics Review Board of Guangzhou 8th People's Hospital approved this study.Written informed consents were provided by all study participants, and the protocol was approved by the IRB of Guangzhou Eighth People's Hospital (Guangzhou, China).

Version history

  1. Received: May 9, 2019
  2. Accepted: August 8, 2019
  3. Accepted Manuscript published: August 9, 2019 (version 1)
  4. Version of Record published: August 20, 2019 (version 2)

Copyright

© 2019, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,715
    views
  • 335
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ting Pan
  2. Zheng Song
  3. Liyang Wu
  4. Guangyan Liu
  5. Xiancai Ma
  6. Zhilin Peng
  7. Mo Zhou
  8. Liting Liang
  9. Bingfeng Liu
  10. Jun Liu
  11. Junsong Zhang
  12. Xuanhong Zhang
  13. Ryan Huang
  14. Jiacong Zhao
  15. Yonghong Li
  16. Xuemei Ling
  17. Yuewen Luo
  18. Xiaoping Tang
  19. Weiping Cai
  20. Kai Deng
  21. Linghua Li
  22. Hui Zhang
(2019)
USP49 potently stabilizes APOBEC3G protein by removing ubiquitin and inhibits HIV-1 replication
eLife 8:e48318.
https://doi.org/10.7554/eLife.48318

Share this article

https://doi.org/10.7554/eLife.48318

Further reading

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article Updated

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

    1. Microbiology and Infectious Disease
    Magdalena Podkowik, Andrew I Perault ... Bo Shopsin
    Research Article

    The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived ‘memory’ of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb−/−) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.