The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity

  1. Mohammed Jamshad
  2. Timothy J Knowles
  3. Scott A White
  4. Douglas G Ward
  5. Fiyaz Mohammed
  6. Kazi Fahmida Rahman
  7. Max Wynne
  8. Gareth W Hughes
  9. Günter Kramer
  10. Bernd Bukau
  11. Damon Huber  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. Heidelberg University, Germany
  3. University of Heidelberg, Germany

Abstract

In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA can bind ribosomes and recognise nascent substrate proteins, but the molecular mechanism of recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.

Data availability

X-ray crystallography data are deposited in PDB under accession code 6GOX.Small-angle x-ray scattering data are deposited in SASBDB under accession codes SASDDY9, SASDDZ9 and SASDE22.

The following data sets were generated
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecA
    Small Angle Scattering Biological Data Bank, SASDDY9.
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecAΔMBD
    Small Angle Scattering Biological Data Bank, SASDDZ9.
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecAΔCTT
    Small Angle Scattering Biological Data Bank, SASDE22.

Article and author information

Author details

  1. Mohammed Jamshad

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy J Knowles

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Scott A White

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas G Ward

    Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Fiyaz Mohammed

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Kazi Fahmida Rahman

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Max Wynne

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Gareth W Hughes

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1228-6152
  9. Günter Kramer

    Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7552-8393
  10. Bernd Bukau

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0521-7199
  11. Damon Huber

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    For correspondence
    d.huber@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7367-3244

Funding

Biotechnology and Biological Sciences Research Council (BB/L019434/1)

  • Mohammed Jamshad
  • Damon Huber

Biotechnology and Biological Sciences Research Council (BB/P009840/1)

  • Timothy J Knowles
  • Gareth W Hughes

Biotechnology and Biological Sciences Research Council (MIBTP)

  • Max Wynne

Deutsche Forschungsgemeinschaft (FOR 1805)

  • Günter Kramer
  • Bernd Bukau

Deutsche Forschungsgemeinschaft (SFB 638)

  • Günter Kramer
  • Bernd Bukau

Wellcome (099266/Z/12/Z)

  • Fiyaz Mohammed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ramanujan S Hegde, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: May 10, 2019
  2. Accepted: June 26, 2019
  3. Accepted Manuscript published: June 27, 2019 (version 1)
  4. Version of Record published: July 10, 2019 (version 2)

Copyright

© 2019, Jamshad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,291
    views
  • 326
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammed Jamshad
  2. Timothy J Knowles
  3. Scott A White
  4. Douglas G Ward
  5. Fiyaz Mohammed
  6. Kazi Fahmida Rahman
  7. Max Wynne
  8. Gareth W Hughes
  9. Günter Kramer
  10. Bernd Bukau
  11. Damon Huber
(2019)
The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity
eLife 8:e48385.
https://doi.org/10.7554/eLife.48385

Share this article

https://doi.org/10.7554/eLife.48385

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.