The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity

  1. Mohammed Jamshad
  2. Timothy J Knowles
  3. Scott A White
  4. Douglas G Ward
  5. Fiyaz Mohammed
  6. Kazi Fahmida Rahman
  7. Max Wynne
  8. Gareth W Hughes
  9. Günter Kramer
  10. Bernd Bukau
  11. Damon Huber  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. Heidelberg University, Germany
  3. University of Heidelberg, Germany

Abstract

In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA can bind ribosomes and recognise nascent substrate proteins, but the molecular mechanism of recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.

Data availability

X-ray crystallography data are deposited in PDB under accession code 6GOX.Small-angle x-ray scattering data are deposited in SASBDB under accession codes SASDDY9, SASDDZ9 and SASDE22.

The following data sets were generated
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecA
    Small Angle Scattering Biological Data Bank, SASDDY9.
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecAΔMBD
    Small Angle Scattering Biological Data Bank, SASDDZ9.
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecAΔCTT
    Small Angle Scattering Biological Data Bank, SASDE22.

Article and author information

Author details

  1. Mohammed Jamshad

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy J Knowles

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Scott A White

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas G Ward

    Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Fiyaz Mohammed

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Kazi Fahmida Rahman

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Max Wynne

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Gareth W Hughes

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1228-6152
  9. Günter Kramer

    Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7552-8393
  10. Bernd Bukau

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0521-7199
  11. Damon Huber

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    For correspondence
    d.huber@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7367-3244

Funding

Biotechnology and Biological Sciences Research Council (BB/L019434/1)

  • Mohammed Jamshad
  • Damon Huber

Biotechnology and Biological Sciences Research Council (BB/P009840/1)

  • Timothy J Knowles
  • Gareth W Hughes

Biotechnology and Biological Sciences Research Council (MIBTP)

  • Max Wynne

Deutsche Forschungsgemeinschaft (FOR 1805)

  • Günter Kramer
  • Bernd Bukau

Deutsche Forschungsgemeinschaft (SFB 638)

  • Günter Kramer
  • Bernd Bukau

Wellcome (099266/Z/12/Z)

  • Fiyaz Mohammed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Jamshad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,359
    views
  • 330
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammed Jamshad
  2. Timothy J Knowles
  3. Scott A White
  4. Douglas G Ward
  5. Fiyaz Mohammed
  6. Kazi Fahmida Rahman
  7. Max Wynne
  8. Gareth W Hughes
  9. Günter Kramer
  10. Bernd Bukau
  11. Damon Huber
(2019)
The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity
eLife 8:e48385.
https://doi.org/10.7554/eLife.48385

Share this article

https://doi.org/10.7554/eLife.48385

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.

    1. Biochemistry and Chemical Biology
    Yingjie Sun, Changheng Li ... Youngnam N Jin
    Research Article

    Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug–protein interactions, such as those with transient protein complexes and membrane-associated proteins. To address these limitations, we developed POST-IT (Pup-On-target for Small molecule Target Identification Technology), a non-diffusive proximity tagging system for live cells, orthogonal to the eukaryotic system. POST-IT utilizes an engineered fusion of proteasomal accessory factor A and HaloTag to transfer Pup to proximal proteins upon directly binding to the small molecule. After significant optimization to eliminate self-pupylation and polypupylation, minimize depupylation, and optimize chemical linkers, POST-IT successfully identified known targets and discovered a new binder, SEPHS2, for dasatinib, and VPS37C as a new target for hydroxychloroquine, enhancing our understanding these drugs’ mechanisms of action. Furthermore, we demonstrated the application of POST-IT in live zebrafish embryos, highlighting its potential for broad biological research and drug development.