The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity

  1. Mohammed Jamshad
  2. Timothy J Knowles
  3. Scott A White
  4. Douglas G Ward
  5. Fiyaz Mohammed
  6. Kazi Fahmida Rahman
  7. Max Wynne
  8. Gareth W Hughes
  9. Günter Kramer
  10. Bernd Bukau
  11. Damon Huber  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. Heidelberg University, Germany
  3. University of Heidelberg, Germany

Abstract

In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA can bind ribosomes and recognise nascent substrate proteins, but the molecular mechanism of recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.

Data availability

X-ray crystallography data are deposited in PDB under accession code 6GOX.Small-angle x-ray scattering data are deposited in SASBDB under accession codes SASDDY9, SASDDZ9 and SASDE22.

The following data sets were generated
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecA
    Small Angle Scattering Biological Data Bank, SASDDY9.
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecAΔMBD
    Small Angle Scattering Biological Data Bank, SASDDZ9.
    1. Knowles T
    2. Jamshad M
    3. Huber D
    (2018) SecAΔCTT
    Small Angle Scattering Biological Data Bank, SASDE22.

Article and author information

Author details

  1. Mohammed Jamshad

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy J Knowles

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Scott A White

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas G Ward

    Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Fiyaz Mohammed

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Kazi Fahmida Rahman

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Max Wynne

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Gareth W Hughes

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1228-6152
  9. Günter Kramer

    Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7552-8393
  10. Bernd Bukau

    Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0521-7199
  11. Damon Huber

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    For correspondence
    d.huber@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7367-3244

Funding

Biotechnology and Biological Sciences Research Council (BB/L019434/1)

  • Mohammed Jamshad
  • Damon Huber

Biotechnology and Biological Sciences Research Council (BB/P009840/1)

  • Timothy J Knowles
  • Gareth W Hughes

Biotechnology and Biological Sciences Research Council (MIBTP)

  • Max Wynne

Deutsche Forschungsgemeinschaft (FOR 1805)

  • Günter Kramer
  • Bernd Bukau

Deutsche Forschungsgemeinschaft (SFB 638)

  • Günter Kramer
  • Bernd Bukau

Wellcome (099266/Z/12/Z)

  • Fiyaz Mohammed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Jamshad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,342
    views
  • 329
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammed Jamshad
  2. Timothy J Knowles
  3. Scott A White
  4. Douglas G Ward
  5. Fiyaz Mohammed
  6. Kazi Fahmida Rahman
  7. Max Wynne
  8. Gareth W Hughes
  9. Günter Kramer
  10. Bernd Bukau
  11. Damon Huber
(2019)
The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity
eLife 8:e48385.
https://doi.org/10.7554/eLife.48385

Share this article

https://doi.org/10.7554/eLife.48385

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.