Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence

  1. Cara E Brook  Is a corresponding author
  2. Mike Boots
  3. Kartik Chandran
  4. Andrew P Dobson
  5. Christian Drosten
  6. Andrea L Graham
  7. Bryan T Grenfell
  8. Marcel A Müller
  9. Melinda Ng
  10. Lin-Fa Wang
  11. Anieke van Leeuwen
  1. University of California, Berkeley, United States
  2. Albert Einstein College Of Medicine, United States
  3. Princeton University, United States
  4. Charité Universitätsmedizin, Germany
  5. Albert Einstein College of Medicine, United States
  6. Duke-National University of Singapore Medical School, Singapore
  7. Royal Netherlands Institute for Sea Research, Netherlands

Abstract

Bats host virulent zoonotic viruses without experiencing disease. A mechanistic understanding of the impact of bats' virus hosting capacities, including uniquely constitutive immune pathways, on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We carried out virus infectivity assays on bat cell lines expressing induced and constitutive immune phenotypes, then developed a theoretical model of our in vitro system, which we fit to empirical data. Best fit models recapitulated expected immune phenotypes for representative cell lines, supporting robust antiviral defenses in bat cells that correlated with higher estimates for within-host viral propagation rates. In general, heightened immune responses limit pathogen-induced cellular morbidity, which can facilitate the establishment of rapidly-propagating persistent infections within-host. Rapidly-replicating viruses that have evolved with bat immune systems will likely cause enhanced virulence following emergence into secondary hosts with immune systems that diverge from those unique to bats.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All images and code used in this study have been made available for download at the following Figshare repository: 10.6084/m9.figshare.8312807.

The following data sets were generated

Article and author information

Author details

  1. Cara E Brook

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    cbrook@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4276-073X
  2. Mike Boots

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kartik Chandran

    Department of Microbiology and Immunology, Albert Einstein College Of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0232-7077
  4. Andrew P Dobson

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Drosten

    Institute of Virology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea L Graham

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6580-2755
  7. Bryan T Grenfell

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marcel A Müller

    Institute of Virology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2242-5117
  9. Melinda Ng

    Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lin-Fa Wang

    Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2752-0535
  11. Anieke van Leeuwen

    Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1987-1458

Funding

National Science Foundation (Graduate Research Fellowship)

  • Cara E Brook

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley (Postdoctoral Fellowship)

  • Cara E Brook

National Institutes of Health (R01-AI134824)

  • Kartik Chandran

Singapore National Research Foundation Grant (NRF2012NRF-CRP001-056)

  • Lin-Fa Wang

Singapore National Research Foundation Grant (NRF2016NRF-NSFC002-013)

  • Lin-Fa Wang

Deutsche Forschungsgemeinschaft (DR 772/10-2)

  • Marcel A Müller

German Federal Ministry of Education and Research (RAPID #01KI1723A)

  • Marcel A Müller

European Union Horizon Grant 2020 (#653316)

  • Marcel A Müller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dan Haydon, University of Glasgow, United Kingdom

Version history

  1. Received: May 13, 2019
  2. Accepted: February 2, 2020
  3. Accepted Manuscript published: February 3, 2020 (version 1)
  4. Version of Record published: March 10, 2020 (version 2)
  5. Version of Record updated: March 12, 2020 (version 3)

Copyright

© 2020, Brook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 35,583
    views
  • 3,788
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cara E Brook
  2. Mike Boots
  3. Kartik Chandran
  4. Andrew P Dobson
  5. Christian Drosten
  6. Andrea L Graham
  7. Bryan T Grenfell
  8. Marcel A Müller
  9. Melinda Ng
  10. Lin-Fa Wang
  11. Anieke van Leeuwen
(2020)
Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence
eLife 9:e48401.
https://doi.org/10.7554/eLife.48401

Share this article

https://doi.org/10.7554/eLife.48401

Further reading

    1. Ecology
    Shuai-Shuai Zhang, Pei-Chao Wang ... Chen-Zhu Wang
    Research Article

    Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100–1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.

    1. Ecology
    2. Epidemiology and Global Health
    Emilia Johnson, Reuben Sunil Kumar Sharma ... Kimberly Fornace
    Research Article

    Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.