Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence

  1. Cara E Brook  Is a corresponding author
  2. Mike Boots
  3. Kartik Chandran
  4. Andrew P Dobson
  5. Christian Drosten
  6. Andrea L Graham
  7. Bryan T Grenfell
  8. Marcel A Müller
  9. Melinda Ng
  10. Lin-Fa Wang
  11. Anieke van Leeuwen
  1. University of California, Berkeley, United States
  2. Albert Einstein College Of Medicine, United States
  3. Princeton University, United States
  4. Charité Universitätsmedizin, Germany
  5. Albert Einstein College of Medicine, United States
  6. Duke-National University of Singapore Medical School, Singapore
  7. Royal Netherlands Institute for Sea Research, Netherlands

Abstract

Bats host virulent zoonotic viruses without experiencing disease. A mechanistic understanding of the impact of bats' virus hosting capacities, including uniquely constitutive immune pathways, on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We carried out virus infectivity assays on bat cell lines expressing induced and constitutive immune phenotypes, then developed a theoretical model of our in vitro system, which we fit to empirical data. Best fit models recapitulated expected immune phenotypes for representative cell lines, supporting robust antiviral defenses in bat cells that correlated with higher estimates for within-host viral propagation rates. In general, heightened immune responses limit pathogen-induced cellular morbidity, which can facilitate the establishment of rapidly-propagating persistent infections within-host. Rapidly-replicating viruses that have evolved with bat immune systems will likely cause enhanced virulence following emergence into secondary hosts with immune systems that diverge from those unique to bats.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. All images and code used in this study have been made available for download at the following Figshare repository: 10.6084/m9.figshare.8312807.

The following data sets were generated

Article and author information

Author details

  1. Cara E Brook

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    cbrook@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4276-073X
  2. Mike Boots

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kartik Chandran

    Department of Microbiology and Immunology, Albert Einstein College Of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0232-7077
  4. Andrew P Dobson

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christian Drosten

    Institute of Virology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea L Graham

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6580-2755
  7. Bryan T Grenfell

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Marcel A Müller

    Institute of Virology, Charité Universitätsmedizin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2242-5117
  9. Melinda Ng

    Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lin-Fa Wang

    Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2752-0535
  11. Anieke van Leeuwen

    Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1987-1458

Funding

National Science Foundation (Graduate Research Fellowship)

  • Cara E Brook

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley (Postdoctoral Fellowship)

  • Cara E Brook

National Institutes of Health (R01-AI134824)

  • Kartik Chandran

Singapore National Research Foundation Grant (NRF2012NRF-CRP001-056)

  • Lin-Fa Wang

Singapore National Research Foundation Grant (NRF2016NRF-NSFC002-013)

  • Lin-Fa Wang

Deutsche Forschungsgemeinschaft (DR 772/10-2)

  • Marcel A Müller

German Federal Ministry of Education and Research (RAPID #01KI1723A)

  • Marcel A Müller

European Union Horizon Grant 2020 (#653316)

  • Marcel A Müller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Brook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 36,045
    views
  • 3,843
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cara E Brook
  2. Mike Boots
  3. Kartik Chandran
  4. Andrew P Dobson
  5. Christian Drosten
  6. Andrea L Graham
  7. Bryan T Grenfell
  8. Marcel A Müller
  9. Melinda Ng
  10. Lin-Fa Wang
  11. Anieke van Leeuwen
(2020)
Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence
eLife 9:e48401.
https://doi.org/10.7554/eLife.48401

Share this article

https://doi.org/10.7554/eLife.48401

Further reading

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.