Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins

Abstract

The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. David W Morgens

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlene Chan

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew J Kane

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas R Weir

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1797-849X
  5. Amy Li

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael M Dubreuil

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. C Kimberly Tsui

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gaelen T Hess

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Adam Lavertu

    Biomedical Informatics Training Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kyuho Han

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicole Polyakov

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jing Zhou

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Emma L Handy

    Department of Chemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Philip Alabi

    Department of Chemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Amanda Dombroski

    Department of Chemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. David Yao

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Russ B Altman

    Bioengineering, Genetics, and Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Jason K Sello

    Department of Chemistry, Brown University, Providence, United States
    For correspondence
    jason_sello@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
  19. Vladimir Denic

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    vdenic@mcb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1982-7281
  20. Michael C Bassik

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    bassik@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5185-8427

Funding

National Institutes of Health (1DP2HD084069-01)

  • Michael C Bassik

National Human Genome Research Institute (T32 HG000044)

  • David W Morgens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ramanujan S Hegde, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: May 13, 2019
  2. Accepted: October 28, 2019
  3. Accepted Manuscript published: November 1, 2019 (version 1)
  4. Version of Record published: November 15, 2019 (version 2)

Copyright

© 2019, Morgens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,090
    Page views
  • 305
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Morgens
  2. Charlene Chan
  3. Andrew J Kane
  4. Nicholas R Weir
  5. Amy Li
  6. Michael M Dubreuil
  7. C Kimberly Tsui
  8. Gaelen T Hess
  9. Adam Lavertu
  10. Kyuho Han
  11. Nicole Polyakov
  12. Jing Zhou
  13. Emma L Handy
  14. Philip Alabi
  15. Amanda Dombroski
  16. David Yao
  17. Russ B Altman
  18. Jason K Sello
  19. Vladimir Denic
  20. Michael C Bassik
(2019)
Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins
eLife 8:e48434.
https://doi.org/10.7554/eLife.48434

Further reading

    1. Cell Biology
    2. Neuroscience
    Elizabeth L Wagner, Jun-Sub Im ... Jung-Bum Shin
    Research Article

    Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as ‘gaps’ in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Wenxin Zhang, Taki Nishimura ... Sharon A Tooze
    Research Article

    Autophagy is an essential catabolic pathway which sequesters and engulfs cytosolic substrates via autophagosomes, unique double-membraned structures. ATG8 proteins are ubiquitin-like proteins recruited to autophagosome membranes by lipidation at the C-terminus. ATG8s recruit substrates, such as p62, and play an important role in mediating autophagosome membrane expansion. However, the precise function of lipidated ATG8 in expansion remains obscure. Using a real-time in vitro lipidation assay, we revealed that the N-termini of lipidated human ATG8s (LC3B and GABARAP) are highly dynamic and interact with the membrane. Moreover, atomistic MD simulation and FRET assays indicate that N-termini of LC3B and GABARAP associate in cis on the membrane. By using non-tagged GABARAPs, we show that GABARAP N-terminus and its cis-membrane insertion are crucial to regulate the size of autophagosomes in cells irrespectively of p62 degradation. Our study provides fundamental molecular insights into autophagosome membrane expansion, revealing the critical and unique function of lipidated ATG8.