Abstract

The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. David W Morgens

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlene Chan

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew J Kane

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas R Weir

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1797-849X
  5. Amy Li

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael M Dubreuil

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. C Kimberly Tsui

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gaelen T Hess

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Adam Lavertu

    Biomedical Informatics Training Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kyuho Han

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicole Polyakov

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jing Zhou

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Emma L Handy

    Department of Chemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Philip Alabi

    Department of Chemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Amanda Dombroski

    Department of Chemistry, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. David Yao

    Department of Genetics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Russ B Altman

    Bioengineering, Genetics, and Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Jason K Sello

    Department of Chemistry, Brown University, Providence, United States
    For correspondence
    jason_sello@brown.edu
    Competing interests
    The authors declare that no competing interests exist.
  19. Vladimir Denic

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    vdenic@mcb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1982-7281
  20. Michael C Bassik

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    bassik@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5185-8427

Funding

National Institutes of Health (1DP2HD084069-01)

  • Michael C Bassik

National Human Genome Research Institute (T32 HG000044)

  • David W Morgens

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ramanujan S Hegde, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: May 13, 2019
  2. Accepted: October 28, 2019
  3. Accepted Manuscript published: November 1, 2019 (version 1)
  4. Version of Record published: November 15, 2019 (version 2)

Copyright

© 2019, Morgens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,293
    views
  • 321
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Morgens
  2. Charlene Chan
  3. Andrew J Kane
  4. Nicholas R Weir
  5. Amy Li
  6. Michael M Dubreuil
  7. C Kimberly Tsui
  8. Gaelen T Hess
  9. Adam Lavertu
  10. Kyuho Han
  11. Nicole Polyakov
  12. Jing Zhou
  13. Emma L Handy
  14. Philip Alabi
  15. Amanda Dombroski
  16. David Yao
  17. Russ B Altman
  18. Jason K Sello
  19. Vladimir Denic
  20. Michael C Bassik
(2019)
Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins
eLife 8:e48434.
https://doi.org/10.7554/eLife.48434

Share this article

https://doi.org/10.7554/eLife.48434

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.