Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease

  1. Matteo D'Antonio
  2. Joaquin Reyna
  3. David Jakubosky
  4. Margaret KR Donovan
  5. Marc-Jan Bonder
  6. Hiroko Matsui
  7. Oliver Stegle
  8. Naoki Nariai
  9. Agnieszka D'Antonio-Chronowska
  10. Kelly A Frazer  Is a corresponding author
  1. University of California, San Diego, United States
  2. European Molecular Biology Laboratory, European Bioinformatics Institute, United Kingdom

Abstract

The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4,083 traits, detecting colocalization for 180 disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account have substantially greater power compared with only using single variants. We examined the association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, postulating that downregulation of RNF5 expression is the likely causal mechanism. Our study provides insights into the genetic architecture of the MHC region and pinpoints disease associations that are due to differential expression of HLA genes and non-HLA genes.

Data availability

Whole-genome sequencing data of 273 individuals in the iPSCORE cohort (Panopoulos et al., 2017) is publicly available through dbGaP: phs001325. RNA-seq data of 215 iPSCs in the iPSCORE cohort (DeBoever et al., 2017) is publicly available through dbGaP:phs000924. Whole-genome sequencing data of 377 individuals in the HipSci cohort is publicly available through EGA: PRJEB15299. RNA-seq data of 231 iPSCs in the HipSci cohort is publicly available through ENA: PRJEB7388. eQTL and HLA-type eQTL summary statistics are available at Figshare (https://figshare.com/s/c8533530204e1822c6f4 and https://figshare.com/s/eab712af0e4baeb99251).

The following previously published data sets were used

Article and author information

Author details

  1. Matteo D'Antonio

    Institute for Genomic Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5844-6433
  2. Joaquin Reyna

    Department of Pediatrics and Rady Children's Hospital, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David Jakubosky

    Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Margaret KR Donovan

    Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc-Jan Bonder

    Wellcome Trust Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Hiroko Matsui

    Institute for Genomic Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Oliver Stegle

    Wellcome Trust Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Naoki Nariai

    Department of Pediatrics and Rady Children's Hospital, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Agnieszka D'Antonio-Chronowska

    Institute for Genomic Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kelly A Frazer

    Institute for Genomic Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    kafrazer@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6060-8902

Funding

California Institute for Regenerative Medicine (GC1R-06673)

  • Kelly A Frazer

National Institutes of Health (HG008118)

  • Kelly A Frazer

National Institutes of Health (HL107442)

  • Kelly A Frazer

National Institutes of Health (DK105541)

  • Kelly A Frazer

National Institutes of Health (DK112155)

  • Kelly A Frazer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Calliope Dendrou, University of Oxford, United Kingdom

Publication history

  1. Received: May 15, 2019
  2. Accepted: November 19, 2019
  3. Accepted Manuscript published: November 20, 2019 (version 1)
  4. Version of Record published: December 10, 2019 (version 2)

Copyright

© 2019, D'Antonio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,488
    Page views
  • 635
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matteo D'Antonio
  2. Joaquin Reyna
  3. David Jakubosky
  4. Margaret KR Donovan
  5. Marc-Jan Bonder
  6. Hiroko Matsui
  7. Oliver Stegle
  8. Naoki Nariai
  9. Agnieszka D'Antonio-Chronowska
  10. Kelly A Frazer
(2019)
Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease
eLife 8:e48476.
https://doi.org/10.7554/eLife.48476

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Matthew Roberts, Julia Ogden ... Carlos Lopez-Garcia
    Tools and Resources Updated

    Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low- and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE (Exploring Transcriptomes of Bronchial Lesions), an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two- and multiple-group comparisons, interrogation of genes of interests, and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.

    1. Computational and Systems Biology
    2. Neuroscience
    Rebecca Elizabeth Carlisle, Arthur D Kuo
    Research Article Updated

    Humans make a number of choices when they walk, such as how fast and for how long. The preferred steady walking speed seems chosen to minimize energy expenditure per distance traveled. But the speed of actual walking bouts is not only steady, but rather a time-varying trajectory, which can also be modulated by task urgency or an individual’s movement vigor. Here we show that speed trajectories and durations of human walking bouts are explained better by an objective to minimize Energy and Time, meaning the total work or energy to reach destination, plus a cost proportional to bout duration. Applied to a computational model of walking dynamics, this objective predicts dynamic speed vs. time trajectories with inverted U shapes. Model and human experiment (N=10) show that shorter bouts are unsteady and dominated by the time and effort of accelerating, and longer ones are steadier and faster and dominated by steady-state time and effort. Individual-dependent vigor may be characterized by the energy one is willing to spend to save a unit of time, which explains why some may walk faster than others, but everyone may have similar-shaped trajectories due to similar walking dynamics. Tradeoffs between energy and time costs can predict transient, steady, and vigor-related aspects of walking.