Electron cryo-microscopy of Bacteriophage PR772 reveals the elusive vertex complex and the capsid architecture

  1. Hemanth KN Reddy  Is a corresponding author
  2. Janos Hajdu
  3. Marta Carroni
  4. Martin Svenda  Is a corresponding author
  1. Uppsala University, Sweden
  2. Stockholm University, Sweden

Abstract

Bacteriophage PR772, a member of the Tectiviridae family, has a 70-nm diameter icosahedral protein capsid that encapsulates a lipid membrane, dsDNA, and various internal proteins. An icosahedrally averaged CryoEM reconstruction of the wild-type virion and a localized reconstruction of the vertex region reveal the composition and the structure of the vertex complex along with new protein conformations that play a vital role in maintaining the capsid architecture of the virion. The overall resolution of the virion is 2.75 Å, while the resolution of the protein capsid is 2.3 Å. The conventional penta-symmetron formed by the capsomeres is replaced by a large vertex complex in the pseudo T=25 capsid. All the vertices contain the host-recognition protein, P5; two of these vertices show the presence of the receptor-binding protein, P2. The 3D structure of the vertex complex shows interactions with the viral membrane, indicating a possible mechanism for viral infection.

Data availability

CryoEM Density maps and atomic models that support the findings of this study have been deposited in the Electron Microscopy Database and the Protein Databank with the accession codes EMD-4461 (Whole particle reconstruction), EMD-4462 (Vertex Complex), EMD-10237 (Localized reconstruction of the penton region), EMD-10238 (Focused Classification of the penton region) and PDB ID 6Q5U (Atomic model of the asymmetric unit).

The following data sets were generated

Article and author information

Author details

  1. Hemanth KN Reddy

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    hemanth.kumar@icm.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4698-8005
  2. Janos Hajdu

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Marta Carroni

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7697-6427
  4. Martin Svenda

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    For correspondence
    Martin.Svenda@icm.uu.se
    Competing interests
    The authors declare that no competing interests exist.

Funding

Vetenskapsrådet (828-2012-108)

  • Janos Hajdu

Vetenskapsrådet (628-2008-1109)

  • Janos Hajdu

Vetenskapsrådet (822-2010-6157)

  • Janos Hajdu

Vetenskapsrådet (822-2012-5260)

  • Janos Hajdu

Knut och Alice Wallenbergs Stiftelse (KAW-2011.081)

  • Janos Hajdu

European Research Council (ERC-291602)

  • Janos Hajdu

Vetenskapsrådet (349-2011-6488)

  • Janos Hajdu

Vetenskapsrådet (2015-06107)

  • Janos Hajdu

European Structural and Investment Funds (CZ.02.1.01/0.0/0.0/15_003/0000447)

  • Janos Hajdu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Reddy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,739
    views
  • 253
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hemanth KN Reddy
  2. Janos Hajdu
  3. Marta Carroni
  4. Martin Svenda
(2019)
Electron cryo-microscopy of Bacteriophage PR772 reveals the elusive vertex complex and the capsid architecture
eLife 8:e48496.
https://doi.org/10.7554/eLife.48496

Share this article

https://doi.org/10.7554/eLife.48496

Further reading

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Amanda C Perofsky, John Huddleston ... Cécile Viboud
    Research Article

    Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.