Remote control of microtubule plus-end dynamics and function from the minus-end

  1. Xiuzhen Chen
  2. Lukas A Widmer
  3. Marcel M Stangier
  4. Michel O Steinmetz
  5. Jörg Stelling  Is a corresponding author
  6. Yves Barral  Is a corresponding author
  1. ETH Zürich, Switzerland
  2. SIB Swiss Institute of Bioinformatics and ETH Zürich, Switzerland
  3. Paul Scherrer Institut, Switzerland

Abstract

In eukaryotes, the organization and function of the microtubule cytoskeleton depend on the allocation of different roles to individual microtubules. For example, many asymmetrically dividing cells differentially specify microtubule behavior at old and new centrosomes. Here we show that yeast spindle pole bodies (SPBs, yeast centrosomes) differentially control the plus-end dynamics and cargoes of their astral microtubules, remotely from the minus-end. The old SPB recruits the kinesin motor protein Kip2, which then translocates to the plus-end of the emanating microtubules, promotes their extension and delivers dynein into the bud. Kip2 recruitment at the SPB depends on Bub2 and Bfa1, and phosphorylation of cytoplasmic Kip2 prevents random lattice binding. Releasing Kip2 of its control by SPBs equalizes its distribution, the length of microtubules and dynein distribution between the mother cell and its bud. These observations reveal that microtubule organizing centers use minus to plus-end directed remote control to individualize microtubule function.

Data availability

All data and code are available in the main text, the supplementary materials, or at https://gitlab.com/csb.ethz/Kip2-SPB-Profile-Manuscript.

Article and author information

Author details

  1. Xiuzhen Chen

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3027-6441
  2. Lukas A Widmer

    Department of Biosystems Science and Engineering, SIB Swiss Institute of Bioinformatics and ETH Zürich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1471-3493
  3. Marcel M Stangier

    Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Michel O Steinmetz

    Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Jörg Stelling

    Department of Biosystems Science and Engineering, SIB Swiss Institute of Bioinformatics and ETH Zürich, Basel, Switzerland
    For correspondence
    joerg.stelling@bsse.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
  6. Yves Barral

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    For correspondence
    yves.barral@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0989-3373

Funding

SystemsX.ch (RTD Grant #2012/192 TubeX)

  • Michel O Steinmetz
  • Jörg Stelling
  • Yves Barral

Swiss National Science Fundation (31003A-105904)

  • Yves Barral

Swiss National Science Fundation (31003A_166608)

  • Michel O Steinmetz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,823
    views
  • 366
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiuzhen Chen
  2. Lukas A Widmer
  3. Marcel M Stangier
  4. Michel O Steinmetz
  5. Jörg Stelling
  6. Yves Barral
(2019)
Remote control of microtubule plus-end dynamics and function from the minus-end
eLife 8:e48627.
https://doi.org/10.7554/eLife.48627

Share this article

https://doi.org/10.7554/eLife.48627

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.