Remote control of microtubule plus-end dynamics and function from the minus-end

  1. Xiuzhen Chen
  2. Lukas A Widmer
  3. Marcel M Stangier
  4. Michel O Steinmetz
  5. Jörg Stelling  Is a corresponding author
  6. Yves Barral  Is a corresponding author
  1. ETH Zürich, Switzerland
  2. SIB Swiss Institute of Bioinformatics and ETH Zürich, Switzerland
  3. Paul Scherrer Institut, Switzerland

Abstract

In eukaryotes, the organization and function of the microtubule cytoskeleton depend on the allocation of different roles to individual microtubules. For example, many asymmetrically dividing cells differentially specify microtubule behavior at old and new centrosomes. Here we show that yeast spindle pole bodies (SPBs, yeast centrosomes) differentially control the plus-end dynamics and cargoes of their astral microtubules, remotely from the minus-end. The old SPB recruits the kinesin motor protein Kip2, which then translocates to the plus-end of the emanating microtubules, promotes their extension and delivers dynein into the bud. Kip2 recruitment at the SPB depends on Bub2 and Bfa1, and phosphorylation of cytoplasmic Kip2 prevents random lattice binding. Releasing Kip2 of its control by SPBs equalizes its distribution, the length of microtubules and dynein distribution between the mother cell and its bud. These observations reveal that microtubule organizing centers use minus to plus-end directed remote control to individualize microtubule function.

Data availability

All data and code are available in the main text, the supplementary materials, or at https://gitlab.com/csb.ethz/Kip2-SPB-Profile-Manuscript.

Article and author information

Author details

  1. Xiuzhen Chen

    Institute of Biochemistry, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3027-6441
  2. Lukas A Widmer

    Department of Biosystems Science and Engineering, SIB Swiss Institute of Bioinformatics and ETH Zürich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1471-3493
  3. Marcel M Stangier

    Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Michel O Steinmetz

    Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Jörg Stelling

    Department of Biosystems Science and Engineering, SIB Swiss Institute of Bioinformatics and ETH Zürich, Basel, Switzerland
    For correspondence
    joerg.stelling@bsse.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
  6. Yves Barral

    Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
    For correspondence
    yves.barral@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0989-3373

Funding

SystemsX.ch (RTD Grant #2012/192 TubeX)

  • Michel O Steinmetz
  • Jörg Stelling
  • Yves Barral

Swiss National Science Fundation (31003A-105904)

  • Yves Barral

Swiss National Science Fundation (31003A_166608)

  • Michel O Steinmetz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,811
    views
  • 366
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiuzhen Chen
  2. Lukas A Widmer
  3. Marcel M Stangier
  4. Michel O Steinmetz
  5. Jörg Stelling
  6. Yves Barral
(2019)
Remote control of microtubule plus-end dynamics and function from the minus-end
eLife 8:e48627.
https://doi.org/10.7554/eLife.48627

Share this article

https://doi.org/10.7554/eLife.48627

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.