1. Cell Biology
Download icon

Native adiponectin in serum binds to mammalian cells expressing T-cadherin, but not AdipoRs or calreticulin

  1. Shunbun Kita  Is a corresponding author
  2. Shiro Fukuda
  3. Norikazu Maeda
  4. Iichiro Shimomura
  1. Osaka University, Japan
Short Report
  • Cited 5
  • Views 935
  • Annotations
Cite this article as: eLife 2019;8:e48675 doi: 10.7554/eLife.48675


Adiponectin is an adipocyte-derived atypically abundant circulating factor that protects various organs and tissues through its receptors, AdipoRs, calreticulin, and T-cadherin. To identify the major binding partner of circulating native adiponectin, we expressed these receptors on the surface of HEK293 cells. Adiponectin, either that in mouse or human serum, purified from serum, or produced by mammalian cells, bound to cells expressing T-cadherin, but not to those expressing AdipoR1 or calreticulin. The stable introduction of T-cadherin and AdipoR1 into CHO cells resulted in the cell surface localization of these receptors. Native adiponectin in serum bound to cells expressing T-cadherin, not to those expressing AdipoR1. The knockdown of T-cadherin, but not AdipoRs resulted in the significant attenuation of native adiponectin binding to C2C12 myotubes. Therefore, native adiponectin binding depended on the amount of T-cadherin expressed in HEK293 cells, CHO cells, and C2C12 myotubes. Collectively, our mammalian cell-based studies suggest that T-cadherin is the major binding partner of native adiponectin in serum.

Article and author information

Author details

  1. Shunbun Kita

    Department of Metabolic Medicine, Osaka University, Suita, Japan
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8937-0053
  2. Shiro Fukuda

    Department of Metabolic Medicine, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Norikazu Maeda

    Department of Metabolic Medicine, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Iichiro Shimomura

    Department of Metabolic Medicine, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.



  • Shiro Fukuda
  • Iichiro Shimomura


  • Shiro Fukuda
  • Iichiro Shimomura

Grant in Aid for Scientific Research (#16K09802)

  • Shunbun Kita

Grant in Aid for Scientific Research (#16K09801)

  • Norikazu Maeda

Grant in Aid for Scientific Research (#15H04853)

  • Iichiro Shimomura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: The experimental protocol was approved as No. 28-072-023 by the Ethics Review Committee for Animal Experimentation of Osaka University School of Medicine. This study also conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health.

Reviewing Editor

  1. David E James, The University of Sydney, Australia

Publication history

  1. Received: May 22, 2019
  2. Accepted: October 13, 2019
  3. Accepted Manuscript published: October 24, 2019 (version 1)
  4. Version of Record published: October 31, 2019 (version 2)


© 2019, Kita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 935
    Page views
  • 170
  • 5

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    İbrahim Avşar Ilik et al.
    Research Article

    The nucleus of higher eukaryotes is a highly compartmentalized and dynamic organelle consisting of several biomolecular condensates that regulate gene expression at multiple levels (Banani et al., 2017; Shin and Brangwynne, 2017). First reported more than 100 years ago by Ramón y Cajal, nuclear speckles (NS) are among the most prominent of such condensates (Spector and Lamond, 2011). Despite their prevalence, research on the function of NS is virtually restricted to colocalization analyses, since an organizing core, without which NS cannot form, remains unidentified (Chen and Belmont, 2019; Galganski et al., 2017). The monoclonal antibody SC35, which was raised against a spliceosomal extract, is a frequently used reagent to mark NS since its debut in 1990 (Fu and Maniatis, 1990). Unexpectedly, we found that this antibody has been misidentified and the main target of SC35 mAb is SRRM2, a large (~300 kDa), spliceosome-associated (Jia and Sun, 2018) protein with prominent intrinsically disordered regions (IDRs) that sharply localizes to NS (Blencowe et al., 1994). Here we show that, the core of NS is likely formed by SON and SRRM2, since depletion of SON leads only to a partial disassembly of NS as reported previously (Ahn et al., 2011; Fei et al., 2017; Sharma et al., 2010), in contrast, combined depletion of SON together with SRRM2, but not other NS associated factors, or depletion of SON in a cell line where IDRs of SRRM2 are genetically deleted, leads to a near-complete dissolution of NS. This work, therefore, paves the way to study the role of NS under diverse physiological and stress conditions.

    1. Cell Biology
    2. Biochemistry and Chemical Biology
    Melissa V Gammons et al.
    Research Article Updated

    Feedback control is a universal feature of cell signaling pathways. Naked/NKD is a widely conserved feedback regulator of Wnt signaling which controls animal development and tissue homeostasis. Naked/NKD destabilizes Dishevelled, which assembles Wnt signalosomes to inhibit the β-catenin destruction complex via recruitment of Axin. Here, we discover that the molecular mechanism underlying Naked/NKD function relies on its assembly into ultra-stable decameric core aggregates via its conserved C-terminal histidine cluster (HisC). HisC aggregation is facilitated by Dishevelled and depends on accumulation of Naked/NKD during prolonged Wnt stimulation. Naked/NKD HisC cores co-aggregate with a conserved histidine cluster within Axin, to destabilize it along with Dishevelled, possibly via the autophagy receptor p62, which binds to HisC aggregates. Consistent with this, attenuated Wnt responses are observed in CRISPR-engineered flies and human epithelial cells whose Naked/NKD HisC has been deleted. Thus, HisC aggregation by Naked/NKD provides context-dependent feedback control of prolonged Wnt responses.